O PDF relativo ao artigo que solicita, não se encontra disponível em Acesso Aberto.
Motivos: O editor não permite o depósito e disponibilização em acesso aberto do PDF que solicita. Para consultar o documento deve aceder ao endereço do editor.
This work aims to design a synthetic construct that mimics the natural bone extracellular matrix through innovative approaches based on simultaneous type I collagen electrospinning and nanophased hydroxyapatite (nanoHA) electrospraying using non-denaturating conditions and non-toxic reagents. The morphological results, assessed using scanning electron microscopy and atomic force microscopy (AFM), showed a mesh of collagen nanofibers embedded with crystals of HA with fiber diameters within the nanometer range (30 nm), thus significantly lower than those reported in the literature, over 200 nm. The mechanical properties, assessed by nanoindentation using AFM, exhibited elastic moduli between 0.3 and 2 GPa. Fourier transformed infrared spectrometry confirmed the collagenous integrity as well as the presence of nanoHA in the composite. The network architecture allows cell access to both collagen nanofibers and HA crystals as in the natural bone environment. The inclusion of nanoHA agglomerates by electrospraying in type I collagen nanofibers improved the adhesion and metabolic activity of MC3T3-E1 osteoblasts. This new nanostructured collagennanoHA composite holds great potential for healing bone defects or as a functional membrane for guided bone tissue regeneration and in treating bone diseases.
The increasing complexity in morphology and composition of modern biomedical materials (e.g., soft and hard biological tissues, synthetic and natural‐based scaffolds, technical textiles) and the high sensitivity to the processing environment requires the development of innovative but benign technologies for processing and treatment. This scenario is particularly applicable where current conventional techniques (steam/dry heat, ethylene oxide, and gamma irradiation) may not be able to preserve the functionality and integrity of the treated material. Sterilization using supercritical carbon dioxide emerges as a green and sustainable technology able to reach the sterility levels required by regulation without altering the original properties of even highly sensitive materials. In this review article, an updated survey of experimental protocols based on supercritical sterilization and of the efficacy results sorted by microbial strains and treated materials was carried out. The application of the supercritical sterilization process in materials used for biomedical, pharmaceutical, and food applications is assessed. The opportunity of supercritical sterilization of not only replace the above mentioned conventional techniques, but also of reach unmet needs for sterilization in highly sensitive materials (e.g., single‐use medical devices, the next‐generation biomaterials, and medical devices and graft tissues) is herein unveiled.
Objectives
Bub3 and Spindly are essential proteins required for the activation and inactivation of the spindle assembly checkpoint, respectively. Here, we explored the clinicopathological significance and the therapeutic potential of the opposing roles of the two proteins in oral squamous cell carcinoma (OSCC).
Materials and Methods
Bub3 and Spindly expression was evaluated by immunohistochemistry in 62 tissue microarrays from OSCC and by real‐time PCR in OSCC cell lines and in normal human oral keratinocytes. The results were analyzed as to their clinicopathological significance. RNA interference‐mediated Spindly or Bub3 inhibition was combined with cisplatin treatment, and the effect on the viability of OSCC cells was assessed.
Results
Overexpression of Bub3 and Spindly was detected in OSCC patients. High expression of Spindly, Bub3, or both was an independent prognostic indicator for cancer‐specific survival and was associated with increased cellular proliferation. Accordingly, Bub3 and Spindly were upregulated in OSCC cells comparatively to their normal counterpart. Inhibition of Bub3 or Spindly was cytotoxic to OSCC cells and enhanced their chemosensitivity to cisplatin.
Conclusions
The data point out Bub3 and Spindly as potential markers of proliferation and prognosis, and highlight the potential therapeutic benefit of combining their inhibition with cisplatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.