The preservation of semen either by refrigeration or cryopreservation is a principal component of most animal breeding industries. Although this procedure has been successful in many species, in others, substantial limitations persist. In the last decade, mechanistic studies have shed light on the molecular changes behind the damage that spermatozoa experience during preservation. Most of this damage is oxidative, thus in this review, we aim to provide an updated overview of recent discoveries about how stallion spermatozoa maintain redox homeostasis, and how the current procedures of sperm preservation disrupt redox regulation and cause sperm damage which affects viability, functionality, fertility and potentially the health of the offspring. We are optimistic that this review will promote new ideas for further research to improve sperm preservation technologies, promoting translational research with a wide scope for applicability not only in horses but also in other animal species and humans.
Although recent research has addressed the impact of cryopreservation on the stallion sperm proteome, studies addressing the stallion sperm phosphoproteome are lacking. In the present study, the data set of proteomes of fresh and cryopreserved spermatozoa were re-analyzed, showing that cryopreservation caused significant changes in the phosphoproteome. The phosphoproteins reduced most significantly by cryopreservation were Ca2+binding tyrosine phosphorylation regulated, protein kinase cAMP-activated catalytic subunit beta (CABYR), mitochondria eating protein (SPATA18), A kinase anchoring protein 4 (AKAP4), A-kinase anchoring protein 3 (AKAP3) and the Family with sequence similarity 71 member B (FAM71B). These proteins belong to the gene ontology (GO) terms sperm fibrous sheath (GO: 0035686), and sperm principal piece (GO: 0097228). The regulatory interactions between kinases and phosphorylation sites on the proteins which were affected most were also investigated, and the potential kinases (based on human orthologs) involved in the regulation of these phosphoproteins identified were: PKCß for SPATA18 and GSK3ß for CABYR. Kinase inhibition assays were also conducted showing that kinases phosphorylating the above-mentioned proteins play an important role in their activity and thus, phosphorylation controls the activity of these proteins and their role in the regulation of the functionality and viability of stallion spermatozoa. In conclusion, the data reported here contribute to the understanding of the fact that the dephosphorylation of certain proteins is a molecular lesion induced by cryopreservation in the stallion spermatozoa.
Tracheobronchomegaly (TBM) is the syndrome of enlarged trachea and main bronchi associated with recurrent and chronic respiratory tract infections. A 42-year-old man with TBM and diffuse interstitial pulmonary fibrosis is described. The possible relationship between the two entities is discussed and the etiology, pathogenesis, clinical manifestations, prognosis and treatment of TBM are reviewed
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.