During bone development, osteoblast differentiation requires remodeling of the extracellular matrix. Although underlying mechanisms have not been elucidated, evidence points to the participation of the nitric oxide (NO) and cyclic guanosine 3′,5′-monophosphate (cGMP) system. Here, we detected increased matrix metalloproteinase (MMP)-13 mRNA, protein and activity, as well as increased inducible NO synthase (iNOS) and NO production during the differentiation of MC3T3-E1 osteoblasts. Transcriptional activity of the MMP-13 promoter was augmented by NO, 8-bromo-cGMP (8-Br-cGMP), and by a dominant-positive form of protein kinase G (PKG1-α). The stimulatory effect on the MMP-13 promoter was partially inhibited by mutation of the osteoblast-specific element 2 (OSE-2) binding site. Core binding factor-1 (Cbfa-1) expression peaked at 7 days of differentiation, and was phosphorylated by PKG in vitro. Cbfa-1 was localized to cell nuclei, and its translocation was inhibited by the iNOS inhibitor 1400W. Immunohistological examination revealed that MMP-13 and Cbfa-1 expression levels are both reduced in 17-day-old embryos of iNOS-deficient mice. Silencing of Cbfa-1 mRNA blocked MMP-13 expression without interfering with endogenous NO production, confirming its role in NO-induced MMP-13 expression by MC3T3-E1 cells. The results described here suggest a mechanism by which NO regulates osteogenesis.
As reported previously, we have extensively studied FoxJ2, a member of the Fork Head transcription factors family. While the biochemical and functional structures of this transcription factor are well understood, its biological function remains unknown. Here, we present data that address this point using transgenic mouse technology. We found that the birth rate and the number of transgenic animals obtained when transferring embryos over-expressing the FoxJ2 protein were lower than those obtained with embryos over-expressing a control protein, suggesting FoxJ2 overexpression has a negative effect on embryonic development. Transient FoxJ2 transgenesis experiments have confirmed that FoxJ2 over-expression has a lethal effect on embryonic development from E10.5. Moreover, in vitro culture of FoxJ2-microinjected embryos demonstrated a significant developmental blockage, indicating that FoxJ2 could also have an effect on preimplantation stages. Most probably, these negative effects of FoxJ2 over-expression during development also explain the low percentage of adult transgenic mice obtained. Furthermore, most of the transgenic mice that lived to adulthood did not show transgene expression. In fact, the only two adult transgenic animals (one male and one female) in which FoxJ2 transgene expression was detected showed a mosaic expression and died prematurely as a result of cardio-respiratory failure. Postmortem analysis of these animals revealed a hypertrophic heart and abnormal testes in the male. In order to identify genes regulated by FoxJ2 consistent with the phenotypes observed for FoxJ2 transgenic mice, EMSA assays and co-transfection experiments were carried out. Our data indicate that the genes coding for the gap junction protein Connexin-43 and the cellcell contact protein E-Cadherin, may be good candidates for FoxJ2-regulated genes. Interestingly, Connexin-43 and E-Cadherin show expression patterns similar to FoxJ2, and the phenotypes of Connexin-43 and E-Cadherin mutants resemble those of our FoxJ2 transgenic animals. These data suggest that the lethal effect on embryonic development of FoxJ2 overexpression, as well as the alterations observed in the heart and testes of adult transgenic mice, could be determined by changes in the transcription of genes such as Connexin-43 and/or E-Cadherin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.