Channel estimation in wireless communication systems is usually accomplished by inserting, along with the information, a series of known symbols, whose analysis is used to define the parameters of the filters that remove the distortion of the data. Nevertheless, a part of the available bandwidth has to be destined to these symbols. Until now, no alternative solution has demonstrated to be fully satisfying for commercial use, but one technique that looks promising is superimposed training (ST). This work describes a hybrid software-hardware FPGA implementation of a recent algorithm that belongs to the ST family, known as Datadependent Superimposed Training (DDST), which does not need extra bandwidth for its training sequences (TS) as it adds them arithmetically to the data. DDST also adds a third sequence known as data-dependent sequence, that destroys the interference caused by the data over the TS. As DDST's computational burden is too high for the commercial processors used in mobile systems, a System on a Programmable Chip (SOPC) approach is used in order to solve the problem.
This paper presents a module that solves the square root by obtaining a number of more significant bits from a look-up table as an approximate root. A set of possible roots are then appended and squared for comparison to the original radicand, finely tuning the calculation. The module stops as soon as it finds an exact root, therefore not all entries take the same number of cycles, reducing the number of iterations required for full resolution. The proposed FPGA module overcomes a Xilinx's logiCORE IP in terms of resources utilization and in several cases latency due to its flexible structure configuration.
A linear sorter based on First In First Out (FIFO) scheme is presented. It is capable of discarding the oldest value, inserting the incoming data while keeping the values sorted in a single clock cycle. This type of sorter can be used as coprocessor or as module in specialized architectures for order statistics filtering. The architecture is composed of identical processing elements thus can be easily adapted to any length according to specific application needs. The use of compact identical processing elements results in a high performance yet small architecture. Results of implementing the architecture on a Field Programmable Gate Array (FPGA) are presented and compared against other reported hardware based sorters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.