Sleep disorders are a common health condition that can affect numerous aspects of life. Obstructive sleep apnea is one of the most common disorders and is characterized by a reduction or cessation of airflow during sleep. In many countries this disorder is usually diagnosed in sleep laboratories, by a polysomnography, which is an expensive procedure involving much effort for the patient. Multiple systems have been proposed to address this situation, including performing the examination and analysis in the patient's home, using sensors to detect physiological signals that are automatically analyzed by algorithms. However, the precision of these devices is usually not enough to provide a clinical diagnosis. Therefore, the objective of this review is to analyze already existing algorithms that have not been implemented on hardware but have had their performance verified by at least one experiment which aims to detect obstructive sleep apnea, in order to show future trends. The performance of different algorithms and methods for apnea detection through the use of different sensors (pulse oximetry, electrocardiogram, respiration, sound and combined approaches) has been evaluated. A total of 84 original research articles published from 2003 to 2017, that had the potential to be promising diagnostic tools, were selected to cover multiple solutions. This review could provide valuable information for those researchers who want to carry out a hardware implementation of potential signal processing algorithms.
The Particle Swarm Optimisation (PSO) algorithm was inspired by the social and biological behaviour of bird flocks searching for food sources. In this nature-based algorithm, individuals are referred to as particles and fly through the search space seeking for the global best position that minimises (or maximises) a given problem. Today, PSO is one of the most well-known and widely used swarm intelligence algorithms and metaheuristic techniques, because of its simplicity and ability to be used in a wide range of applications. However, in-depth studies of the algorithm have led to the detection and identification of a number of problems with it, especially convergence problems and performance issues. Consequently, a myriad of variants, enhancements and extensions to the original version of the algorithm, developed and introduced in the mid-1990s, have been proposed, especially in the last two decades. In this article, a systematic literature review about those variants and improvements is made, which also covers the hybridisation and parallelisation of the algorithm and its extensions to other classes of optimisation problems, taking into consideration the most important ones. These approaches and improvements are appropriately summarised, organised and presented, in order to allow and facilitate the identification of the most appropriate PSO variant for a particular application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.