Antioxidant-rich foods and beverages play an essential role in the prevention of diseases. This study assessed the influence of the addition of ethanolic extract of propolis (EEP) to beer at different concentrations (0.05, 0.15, and 0.25 g/L). Total phenolic content (TPC) and total flavonoid content (TFC) were determined. Antioxidant activity (AA) was evaluated by radical scavenging activity (DPPH and ABTS) and reducing power (FRAP). The addition of EEP in beer resulted in a linear increase in the TPC with values of 4.5%, 16.7%, and 26.7% above a control (no EEP added; 242 mg gallic acid equivalent/L). A similar increase was observed with TFC values 16.0%, 49.7%, and 59.2% above the control (16.9 mg quercetin equivalent/L). The FRAP assay indicated linear increases in AA relative to control with values of 1555, 1705, and 1892 mol Trolox equivalent/L following EEP additions. The incorporation of EEP resulted in increases in the bioactive compounds and AA in beer without altering the physicochemical parameters of golden ale beer. The results indicate a promising use of propolis extract as a functional ingredient in beer.
A semi-industrial application of the continuous stabilization of white wine protein using a column packed with zirconia was studied and compared to the traditional bentonite treatment using a Macabeu white wine. Physicochemical and wine sensory properties were evaluated using a rating system and triangle tests. Continuous protein stabilization was analyzed in three residence times, and the equivalent of 300 BV of wine was used for both treatments. Wine protein content was reduced by 21%, 40%, and 42% using the continuous process with residence times of 7.5, 15, and 30 min, respectively, and by 61.4% using the bentonite treatment. The wines obtained from the packed column were protein stable up to 25, 75, and 175 BV for residence times of 7.5, 15, and 30 min, respectively. The amount of polyphenol removed was less than 10%, and similar amounts were removed from the wine regardless of residence time, while 20.6% of polyphenol was removed using bentonite. The physicochemical and sensory properties of wine treated with bentonite were similar to those of wine treated with zirconia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.