In recent years, there has been a notable amount of research on developing cryptographic schemes that are secure against both quantum and classical computers. In 2016, the National Institute of Standards and Technology (NIST) initiated a process to solicit, evaluate, and standardize one or more quantum-resistant public key cryptographic schemes. This process originated because quantum computers can exploit quantum mechanical phenomena and solve mathematical problems that are difficult or intractable for classical computers. This kind of mathematical problem is the basis of secure public key cryptography. As a consequence, in a near future quantum computers will be able to break many of the public key schemes currently in use. However, the challenge is especially acute for devices with different architectures. They might not be well equipped to run the new standards and interoperate with existing communication protocols and networks. In this work, we analyze the performance of postquantum schemes in the transport layer security (TLS) protocol considering x86 as the server architecture and x86/ARM architectures as clients. All of them lack cloud computing or virtualized environments. Our analysis considers integrating the implementation of two cryptographic schemes that were successful in the second round of the postquantum standardization process, namely, Dilithium and New Hope. The performance of postquantum schemes in the TLS protocol is statistically analyzed in x86 and ARM architectures, giving the relationships, the effects and the survival of the analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.