The heterobimetallic aluminosilicate [LAl(SLi)(micro-O)Si(OLi.2thf)(O(t)Bu)(2)](2) was prepared from the LAl(SH)(micro-O)Si(OH)(O(t)Bu)(2) (L = [HC{C(Me)N(Ar)}(2)](-), Ar = 2,6-di-(i)Pr(2)C(6)H(3)) ligand, which can also be hydrolyzed to LAl(OH.thf)(micro-O)Si(OH)(O(t)Bu)(2)- leading to the first aluminosilicate-dihydroxide soluble in organic solvents.
Molecular aluminosilicate Al(SH)(micro-O)Si(OH)(O(t)Bu)(2) ( = [HC{C(Me)N(Ar)}(2)](-), Ar = 2,6-(i)Pr(2)C(6)H(3)) has been prepared from Al(SH)(2) and ((t)BuO)(2)Si(OH)(2) in high yield. When reacted with one equiv. of water, the unique aluminosilicate containing two terminal hydroxy groups Al(OH.THF)(mu-O)Si(OH)(O(t)Bu)(2) can be isolated. However, when is reacted with the bulkier silanol ((t)BuO)(3)SiOH, no reaction is observed. The desired Al(SH)(micro-O)Si(O(t)Bu)(3) can be prepared in a two-step synthesis between AlH(2) and ((t)BuO)(3)SiOH giving first Al(H)(micro-O)Si(O(t)Bu)(3), which reacts further with elemental sulfur to give as the only product. Direct hydrolysis of was conducted to obtain Al(OH)(micro-O)Si(O(t)Bu)(3), however, such hydrolysis always resulted in a complete decomposition of the starting material. Therefore we used boric acid, which condenses in non-polar solvents and slowly evolve water, to hydrolyze to under mild conditions. Compounds , and have been characterized by single-crystal X-ray diffraction.
New lanthanide complexes with 4,5-bis(diphenyl)phosphoranyl-1,2,3-triazolate (L(-)), LnL(3).nH(2)O (1-8) and LnL(3)(phen).nH(2)O (9-16) (Ln = La, Ce, Nd, Sm, Eu, Gd, Tb, Er), have been prepared and spectroscopically characterized. The structures of LnL(3).nH(2)O (Ln = La, Ce, Nd, Sm and Gd) were determined by X-ray crystallography. The metal centers exhibit a distorted trigonal dodecahedron coordination environment with two symmetrically O,O-bidentate ligands and one unsymmetrically O,N- ligand attached to the metal; two oxygen atoms from neighboring dimethyl sulfoxide (DMSO) molecules complete the coordination sphere. This unsymmetrical ligand coordination behavior was also identified in solution through (31)P{(1)H} NMR studies. Photoluminescence spectroscopy experiments in CH(2)Cl(2) for both types of complexes containing Eu(III) (6, 14) and Tb(III) (7, 15) exhibit strong characteristic red and green emission bands for Eu(III) and Tb(III), respectively. Furthermore, NdL(3) (phen).5H (2)O (11) displays emission in the near-infrared spectral region ((4)F(3/2) --> (4)F(9/2) at 872 nm and (4)F(3/2) --> (4)F(11/2) at 1073 nm). The complexes containing 1,10-phenantroline exhibit higher quantum yields upon excitation at 267 nm, indicating that this auxiliary ligand promotes the luminescence of the complexes; however, luminescence lifetimes (tau) in this case are shorter than those of the LnL(3).nH(2)O series.
The synthesis of molecular heterometallic alumosilicates in good yields has been achieved by reaction between LAl(OH·thf)(μ‐O)Si(OH)(OtBu)2 (1, L = [HC{C(Me)N(Ar)}2]–, Ar = 2,6‐iPr2C6H3) and group 4 amides. These reactions lead to inorganic cycles (type I) and spirocycles (type II) containing six‐membered rings with unprecedented inorganic cores (O–Al–O–Si–O)nM (n = 1, 2; M = Ti, Zr and Hf). Noteworthy, for the heavier metals, Zr and Hf, higher steric bulk in the alkyl substituent of the amide moiety is required to obtain type I compounds. The solid‐state structures for all compounds were determined and reveal a tetrahedral environment for all metal atoms, dihedral angles close to 90° for spirocyclic compounds, and isomorphous structures for the Zr and Hf derivatives.
Homo- or hetero alumoxanesilicates or bridged M–OH–M hydroxidesilicates with unusual or unprecedented inorganic cores have been obtained in reactions between 1 and nBuLi, AlMe3, GaMe3 or ZnMe2. The aluminum derivatives serve as models for MAO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.