Goodpasture disease is an autoimmune disorder that occurs naturally only in humans. Also exclusive to humans is the phosphorylation process that targets the unique N-terminal region of the Goodpasture antigen. Here we report the molecular cloning of GPBP (Goodpasture antigen-binding protein), a previously unknown 624-residue polypeptide. Although the predicted sequence does not meet the conventional structural requirements for a protein kinase, its recombinant counterpart specifically binds to and phosphorylates the exclusive N-terminal region of the human Goodpasture antigen in vitro. This novel kinase is widely expressed in human tissues but shows preferential expression in the histological structures that are targets of common autoimmune responses. The work presented in this report highlights a novel gene to be explored in human autoimmunity.
Goodpasture-antigen binding protein (GPBP) is a nonconventional Ser/Thr kinase for basement membrane type IV collagen.Various studies have questioned these findings and proposed that GPBP serves as transporter of ceramide between the endoplasmic reticulum and the Golgi apparatus. Here we show that cells expressed at least two GPBP isoforms resulting from canonical (77-kDa) and noncanonical (91-kDa) mRNA translation initiation. The 77-kDa polypeptide interacted with type IV collagen and localized as a soluble form in the extracellular compartment. The 91-kDa polypeptide and its derived 120-kDa polypeptide associated with cellular membranes and regulated the extracellular levels of the 77-kDa polypeptide. A short motif containing two phenylalanines in an acidic tract and the 26-residue Ser-rich region were required for efficient 77-kDa polypeptide secretion. Removal of the 26-residue Ser-rich region by alternative exon splicing rendered the protein cytosolic and sensitive to the reduction of sphingomyelin cellular levels. These and previous data implicate GPBPs in a multicompartmental program for protein secretion (i.e. type IV collagen) that includes: 1) phosphorylation and regulation of protein molecular/supramolecular organization and 2) interorganelle ceramide trafficking and regulation of protein cargo transport to the plasma membrane. Goodpasture antigen-binding protein (GPBP)2 phosphorylates the noncollagenous-1 (NC1) domain of the ␣3 chain of type IV collagen (␣3(IV)NC1) (1). This domain is a pivotal structure in the molecular and supramolecular organization of the glomerular basement membrane collagen and also the target of autoantibodies mediating glomerulonephritis in Goodpasture disease (2). Increased GPBP expression has been associated with autoimmune pathogenesis including Goodpasture disease (3) and with the induction of glomerular basement membrane collagen disorganization and deposit of IgA antibodies (4). These observations suggest that GPBP regulates glomerular basement membrane collagen organization and induces type IV collagen-based antibody-mediated glomerulonephritis when its expression is abnormally elevated (3, 4). The GPBP gene (COL4A3BP) also encodes for GPBP⌬26, a more abundant, less active, alternatively spliced GPBP variant lacking a 26-residue Ser-rich region that is apparently not regulated under these pathological conditions (3).GPBP contains multiple structural elements including N-terminal pleckstrin homology domain, Ser-Xaa-Yaa region, bipartite nuclear localization signal, coiled-coil domain, two phenylalanines in an acidic tract (FFAT) motif, and C-terminal steroidogenic acute regulatory related lipid transfer (START) domain. Additional structural features include motifs for selfinteraction and phosphorylation (1, 3, 5, 6). The pleckstrin homology domains comprise a variety of poorly conserved structures present only in eukaryotes that have been proposed to mediate protein targeting to cellular membranes through interaction with phosphoinositides (7). A variety of proteins inc...
Increased expression of Goodpasture antigen-binding protein (GPBP), a protein that binds and phosphorylates basement membrane collagen, has been associated with immune complex-mediated pathogenesis. However, recent reports have questioned this biological function and proposed that GPBP serves as a cytosolic ceramide transporter (CERT L ). Thus, the role of GPBP in vivo remains unknown. New Zealand White (NZW) mice are considered healthy animals although they convey a genetic predisposition for immune complex-mediated glomerulonephritis. Here we show that NZW mice developed age-dependent lupus-prone autoimmune response and immune complex-mediated glomerulonephritis characterized by elevated GPBP, glomerular basement membrane (GBM) collagen disorganization and expansion, and deposits of IgA on disrupted GBM. Transgenic overexpression of human GPBP (hGPBP) in non-lupusprone mice triggered similar glomerular abnormalities including deposits of IgA on a capillary GBM that underwent dissociation, in the absence of an evident autoimmune response. We provide in vivo evidence that GPBP regulates GBM collagen organization and its elevated expression causes dissociation and subsequent accumulation of IgA on the GBM. Finally, we describe a previously unrecognized pathogenic mechanism that may be relevant in human primary immune complex-mediated glomerulonephritis. (Am J Pathol
Goodpasture antigen-binding protein (GPBP) is an exportable1 Ser/Thr kinase that induces collagen IV expansion and has been associated with chemoresistance following epithelial-to-mesenchymal transition (EMT). Here we demonstrate that cancer EMT phenotypes secrete GPBP (mesenchymal GPBP) which displays a predominant multimeric oligomerization and directs the formation of previously unrecognized mesh collagen IV networks (mesenchymal collagen IV). Yeast twohybrid (YTH) system was used to identify a 260 SHCIE 264 motif critical for multimeric GPBP assembly which then facilitated design of a series of potential peptidomimetics. The compound 3-[4''-methoxy-3,2'-dimethyl-(1,1';4',1'')terphenyl-2''-yl]propionic acid, or T12, specifically targets mesenchymal GPBP and disturbs its multimerization without affecting kinase catalytic site. Importantly, T12 reduces growth and metastases of tumors populated by EMT phenotypes. Moreover, low-dose doxorubicin sensitizes epithelial cancer precursor cells to T12, thereby further reducing tumor load. Given that T12 targets the pathogenic mesenchymal GPBP, it does not bind significantly to normal tissues and therapeutic dosing was not associated with toxicity. T12 is a first-in-class drug candidate to treat cancer by selectively targeting the collagen IV of the tumor cell microenvironment. www.impactjournals.com/oncotarget/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.