Cell death is a prominent feature of B cell development. For example, a large population of B cells dies at the pre‐B cell stage presumably due to the failure to express a functional immunoglobulin receptor. In addition, developing B cells expressing antigen receptors for self are selectively eliminated at the immature B cell stage. The molecular signals that control B cell survival are largely unknown. The product of the bcl‐2 proto‐oncogene may be involved as its overexpression inhibits apoptotic cell death in a variety of biological systems. However, the physiological role of the endogenous Bcl‐2 protein during B cell development is undetermined. Here we show a striking developmental regulation of the Bcl‐2 protein in B lymphocytes. Bcl‐2 is highly expressed in CD43+ B cell precursors (pro‐B cells) and mature B cells but downregulated at the pre‐B and immature B cell stages of development. We found that Bcl‐2 expressed by B cells is a long‐lived protein with a half‐life of approximately 10 h. Importantly, susceptibility to apoptosis mediated by the glucocorticoid hormone dexamethasone is stage‐dependent in developing B cells and correlates with the levels of Bcl‐2 protein. Furthermore, expression of a bcl‐2 transgene rescued pre‐B and immature B cells from dexamethasone‐induced cell death, indicating that Bcl‐2 can inhibit the apoptotic cell death of progenitors and early B cells. Taken together, these findings argue that Bcl‐2 is a physiological signal controlling cell death during B cell development.
Here, we have studied how Sox genes and BMP signaling are functionally coupled during limb chondrogenesis. Using the experimental model of TGFbeta1-induced interdigital digits, we dissect the sequence of morphological and molecular events during in vivo chondrogenesis. Our results show that Sox8 and Sox9 are the most precocious markers of limb cartilage, and their induction is independent and precedes the activation of BMP signaling. Sox10 appears also to cooperate with Sox9 and Sox8 in the establishment of the digit cartilages. In addition, we show that experimental induction of Sox gene expression in the interdigital mesoderm is accompanied by loss of the apoptotic response to exogenous BMPs. L-Sox5 and Sox6 are respectively induced coincident and after the expression of Bmpr1b in the prechondrogenic aggregate, and their activation correlates with the induction of Type II Collagen and Aggrecan genes in the differentiating cartilages. The expression of Bmpr1b precedes the appearance of morphological changes in the prechondrogenic aggregate and establishes a landmark from which the maintenance of the expression of all Sox genes and the progress of cartilage differentiation becomes dependent on BMPs. Moreover, we show that Ventroptin precedes Noggin in the modulation of BMP activity in the developing cartilages. In summary, our findings suggest that Sox8, Sox9, and Sox10 have a cooperative function conferring chondrogenic competence to limb mesoderm in response to BMP signals. In turn, BMPs in concert with Sox9, Sox6, and L-Sox5 would be responsible for the execution and maintenance of the cartilage differentiation program.
In the final stages of limb morphogenesis, autopodial cells leaving the progress zone differentiate into cartilage or undergo apoptotic cell death, depending on whether they are incorporated into the digital rays or interdigital spaces. Most evidence indicates that these two opposite fates of the autopodial mesoderm are controlled by BMP signaling. However, the molecular basis for these two distinct actions of BMPs, including the receptors involved in the process, is controversial. In this study we have addressed this question by exploring the presence in the developing autopod of diffusible signals able to modulate BMP function and by analyzing the effects of their exogenous administration on the pattern of expression of BMP receptor genes. Our findings show that tgfbeta2 and noggin genes are expressed in the condensing region of the developing digital rays in addition to the well-known distribution in the autopodial tissues of FGFs (apical ectodermal ridge, AER) and BMPs (AER, progress zone mesoderm, and interdigital regions). Exogenous administration of all the factors causes changes in the expression of the bmpR-1b gene which are followed by parallel alterations of the skeletal phenotype: FGFs inhibit the expression of bmpR-1b compatible with their function in the maintenance of the progress zone mesoderm in an undifferentiated state; and TGFbetas induce the expression of bmpR-1b and promote ectopic chondrogenesis, compatible with a function in the establishment of the position of the digital rays. In addition we provide evidence for the occurrence of an interactive loop between BMPs and noggin accounting for the spatial distribution of bmpR-1b which may control the size and shape of the skeletal pieces. In contrast to the bmpR-1b gene, the bmpR-1a gene is expressed at low levels in the autopodial mesoderm and its expression is not modified by any of the tested factors regardless of their effects on chondrogenesis or cell death. Finally, the role of BMPs in programmed cell death is confirmed here by the intense inhibitory effect of noggin on apoptosis, but the lack of correlation between changes in the pattern of cell death induced by treatment with the studied factors and the expression of either bmpR-1a or bmpR-1b genes suggest that a still-unidentified BMP receptor may account for this BMP function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.