Ca 2؉-ATPase inhibition by stoichiometric and substoichiometric concentrations of cyclopiazonic acid was studied in sarcoplasmic reticulum preparations from rabbit fast-twitch muscle. The apparent affinity of the nonphosphorylated enzyme for ATP showed a K d of ϳ3 M in the absence of cyclopiazonic acid and ϳ28 M in the presence of the drug. Fractional saturation of the enzyme by cyclopiazonic acid was accompanied by the appearance of two ATP-binding populations (enzyme with and without drug) and a progressive increase in the half-maximal concentration for saturating the ATPbinding sites. Enzyme turnover in the presence of stoichiometric concentrations of cyclopiazonic acid displayed lower apparent affinity for ATP and lower maximal hydrolytic activity than in the absence of the drug. When cyclopiazonic acid is in the substoichiometric range, the observed kinetic parameters will correspond to the simultaneous contribution of two different reaction cycles sustained by the enzyme with and without drug. The inhibition could be elicited by adding ATP to allow the enzyme turnover when cyclopiazonic acid was preincubated with the enzyme in the presence of Ca 2؉. The onset of inhibition during enzyme cycling was observed over a period of seconds, revealing the existence of a low inhibition rate constant. It is concluded that cyclopiazonic acid decreases enzyme affinity for ATP in non-turnover conditions by approximately one order of magnitude. This allows enzyme cycling after drug binding, provided that a high ATP concentration is used. Cyclopiazonic acid and ATP do not compete for the same binding site.
The primary cardiotoxic action of doxorubicin when used as antitumor drug is attributed to the generation of reactive oxygen species (ROS) therefore effective cardioprotection therapies are needed. In this sense, the antianginal drug nicorandil has been shown to be effective in cardioprotection from ischemic conditions but the underlying molecular mechanism to cope with doxorubicin-induced ROS is unclear. Our in vitro study using the HL-1 cardiomyocyte cell line derived from mouse atria reveals that the endogenous nitric oxide (NO) production was stimulated by nicorandil and arrested by NO synthase inhibition. Moreover, while the NO synthase activity was inhibited by doxorubicin-induced ROS, the NO synthase inhibition did not affect doxorubicin-induced ROS. The inhibition of NO synthase activity by doxorubicin was totally prevented by preincubation with nicorandil. Nicorandil also concentration-dependently (10 to 100 μM) decreased doxorubicin-induced ROS and the effect was antagonized by 5-hydroxydecanoate. The inhibition profile of doxorubicin-induced ROS by nicorandil was unaltered when an L-arginine derivative or a protein kinase G inhibitor was present. Preincubation with pinacidil mimicked the effect of nicorandil and the protection was eliminated by glibenclamide. Quantitative colocalization of fluorescence indicated that the mitochondrion was the target organelle of nicorandil and the observed response was a decrease in the mitochondrial inner membrane potential. Interference with H+ movement across the mitochondrial inner membrane, leading to depolarization, also protected from doxorubicin-induced ROS. The data indicate that activation of the mitochondrial ATP-sensitive K+ channel by nicorandil causing mitochondrial depolarization, without participation of the NO donor activity, was responsible for inhibition of the mitochondrial NADPH oxidase that is the main contributor to ROS production in cardiomyocytes. Impairment of the cytosolic Ca2+ signal induced by caffeine and the increase in lipid peroxidation, both of which are indicators of doxorubicin-induced oxidative stress, were also prevented by nicorandil.
Chimeric exchanges and mutations were produced in the Ca(2+)-ATPase (SERCA) to match (in the majority of cases) corresponding sequences of the Na(+),K(+)-ATPase. The effects of these mutations on the concentration dependence of the specific Ca(2+)-ATPase inhibition by thapsigargin (TG) and cyclopiazonic acid (CPA) were then determined. Extensive chimeric mutations on the large cytosolic loop, on the S4 stalk segment, and on the M3 transmembrane segments produced little or no modification of the Ca(2+)-ATPase sensitivity to either inhibitor. On the other hand, the presence of a six amino acid Na(+), K(+)-ATPase sequence within the S3 stalk segment of the Ca(2+)-ATPase raised 60-fold the apparent K(i) for TG and 250-fold the apparent K(i) for CPA. More limited mutations within the same S3 segment, however, affected differently the concentration dependence of the Ca(2+)-ATPase inhibition by TG or CPA. Specifically, single mutation of Phe256 to Val increased 20-fold the apparent K(i) for TG, while having very little effect on the apparent K(i) for CPA. These findings indicate significant overlap of the TG and CPA binding domains within the S3 stalk segment of the Ca(2+)-ATPase, where the contribution of each protein residue is dependent on the structures of the two inhibitors. Saturating concentrations of either or both TG and CPA produce an identical reduction of the affinity of the ATPase for ATP, suggesting that only one inhibitor can bind at any time due to significant overlap of their binding domains. It is suggested that perturbations produced by binding of either inhibitor within the stalk segment interfere with the long-range functional linkage between ATP utilization in the ATPase cytosolic region and Ca(2+) binding in the membrane-bound region.
The affinity of sarcoplasmic reticulum Ca2+-ATPase for cyclopiazonic acid is dependent on the conformational state of the enzyme. It is high in the absence of Ca2+ but low in its presence. When Ca2+ was added to the enzyme in the presence of equimolar toxin, the apparent rate constant for Ca2+ binding was 0.6 min-1 when measured at 37 degrees C. The apparent equilibrium constant for Ca2+ dissociation increased from 0.2 to 0.6 microM at neutral pH, and from 5.9 to 37 microM at pH 6.0. The apparent equilibrium constant for Ca2+ dissociation increased progressively as the amount of toxin increased above an equimolar level. Cyclopiazonic acid decreased phosphorylation by ATP and Ca2+ when the enzyme in the absence of Ca2+ was incubated in the presence of toxin, although no effect was observed after a preliminary incubation with Ca2+ at 37 degrees C. Cyclopiazonic acid incubated with the enzyme in the presence of Ca2+ could be eliminated with a Sephadex column. However, the toxin could not be removed when it was incubated with the enzyme in the absence of Ca2+. In the latter case, cyclopiazonic acid was eliminated when the enzyme in the presence of toxin was incubated with Ca2+ at 37 degrees C. Under turnover conditions and in the presence of 10 microM ATP, the toxin-enzyme interaction can be characterized by an apparent Kd of 7 nM. With an ATP concentration of 1 mM, the enzyme was inhibited completely at a toxin/enzyme molar ratio of approximately 10. Furthermore, enzyme activity was observed to recover at a toxin/enzyme molar ratio of 1 when the Ca2+ concentration was raised, which is consistent with the competitive character of cyclopiazonic acid and Ca2+. It is concluded that ATP and Ca2+ can protect against cyclopiazonic acid inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.