Abstract. We present a short survey of the literature on indexing and retrieval of mathematical knowledge, with pointers to 72 papers and tentative taxonomies of both retrieval problems and recurring techniques. Purpose Driven Taxonomy of Retrieval ProblemsRetrieval of mathematical knowledge is always presented as the low hanging fruit of Mathematical Knowledge Management, and it has been addressed in several papers by people coming either from the formal methods or from the information retrieval community. The problem being resistant to classical content search techniques [LRG13], it is usually addressed combining a small set of new ideas and techniques that are recurrent in the literature. Despite the amount of work, however, there is not a single solution that is the clearly winning on the others, nor convincing unbiased benchmarks to compare solutions. Some authors like [KK07] also suggest that the community should first better understand the actual needs of mathematicians from an unbiased perspective to improve the MKM technology as a whole. In this paper we collect a hopefully comprehensive bibliography, and we roughly classify the papers according to novel taxonomies both for the problems and the techniques employed. The only other surveys on the same topic are [AZ04], now outdated and focused mostly on (European) research projects that contributed to the topic in the 6th Framework Programme, [ZB12], which covers less literature in much greater detail without attempting a classification, [L13], which is focused on evaluation of mathematics retrieval, and [L10], which is written in Slovak.We begin our discussion with a purpose driven taxonomy made of three different retrieval problems that deal with mathematical knowledge. Each problem is characterised by its own set of expectations and constraints, and adopting a solution to another problem may be infeasible or yield poor results. In the next sections we classify the papers according to an encoding based taxonomy (presentation vs content vs semantics) and to a taxonomy of techniques employed. Finally we point to the rich literature relative to the problem of ranking, and we touch the problem of evaluation of systems. We conclude with some notes on the availability of math retrieval systems.⋆ The final publication is available at http://link.springer.com.
The formal system λδ is a typed λ-calculus that pursues the unification of terms, types, environments, and contexts as the main goal. λδ takes some features from the Automath-related λ-calculi and some from the pure type systems, but differs from both in that it does not include the construction while it provides for an abbreviation mechanism at the level of terms. λδ enjoys some important desirable properties such as the confluence of reduction, the correctness of types, the uniqueness of types up to conversion, the subject reduction of the type assignment, the strong normalization of the typed terms, and, as a corollary, the decidability of type inference problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.