Skin diseases effectively influence all parts of life. Early and accurate detection of skin cancer is necessary to avoid significant loss. The manual detection of skin diseases by dermatologists leads to misclassification due to the same intensity and color levels. Therefore, an automated system to identify these skin diseases is required. Few studies on skin disease classification using different techniques have been found. However, previous techniques failed to identify multi-class skin disease images due to their similar appearance. In the proposed study, a computer-aided framework for automatic skin disease detection is presented. In the proposed research, we collected and normalized the datasets from two databases (ISIC archive, Mendeley) based on six Basal Cell Carcinoma (BCC), Actinic Keratosis (AK), Seborrheic Keratosis (SK), Nevus (N), Squamous Cell Carcinoma (SCC), and Melanoma (M) common skin diseases. Besides, segmentation is performed using deep Convolutional Neural Networks (CNN). Furthermore, three types of features are extracted from segmented skin lesions: ABCD rule, GLCM, and in-depth features. AlexNet transfer learning is used for deep feature extraction, while a support vector machine (SVM) is used for classification. Experimental results show that SVM outperformed other studies in terms of accuracy, as AK disease achieved 100% accuracy, BCC 92.7%, M 95.1%, N 97.8%, SK 93.1%, SCC 91.4% with a global accuracy of 95.4%.
Respiratory sound (RS) attributes and their analyses structure a fundamental piece of pneumonic pathology, and it gives symptomatic data regarding a patient's lung. A couple of decades back, doctors depended on their hearing to distinguish symptomatic signs in lung audios by utilizing the typical stethoscope, which is usually considered a cheap and secure method for examining the patients. Lung disease is the third most ordinary cause of death worldwide, so; it is essential to classify the RS abnormality accurately to overcome the death rate. In this research, we have applied Fourier analysis for the visual inspection of abnormal respiratory sounds. Spectrum analysis was done through Artificial Noise Addition (ANA) in conjunction with different deep convolutional neural networks (CNN) to classify the seven abnormal respiratory sounds—both continuous (CAS) and discontinuous (DAS). The proposed framework contains an adaptive mechanism of adding a similar type of noise to unhealthy respiratory sounds. ANA makes sound features enough reach to be identified more accurately than the respiratory sounds without ANA. The obtained results using the proposed framework are superior to previous techniques since we simultaneously considered the seven different abnormal respiratory sound classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.