In rodents, the whisker representation in primary somatosensory (SI) cortex projects to the dorsolateral neostriatum, but the location of these projections has never been characterized with respect to layer IV barrels and their intervening septa. To address this issue, we injected a retrograde tracer into the dorsolateral neostriatum and then reconstructed the location of the labeled corticostriatal neurons with respect to the cytochrome oxidase (CO)-labeled barrels in SI. When the tracer was restricted to a small focal site in the neostriatum, the retrogradely labeled neurons formed elongated strips that were parallel to the curvilinear orientation of layer IV barrel rows. After larger tracer injections, labeled neurons were distributed uniformly across layer V and were aligned with both the barrel and septal compartments. Labeled projections from the contralateral SI barrel cortex, however, were much fewer in number and were disproportionately associated with the septal compartments. A comparison of the labeling patterns in the ipsilateral and contralateral hemispheres revealed symmetric, mirror-image distributions that extended across primary motor cortex (MI) and multiple somatosensory cortical regions, including the secondary somatosensory (SII) cortex, the parietal ventral (PV) and parietal rhinal (PR) areas, and the posteromedial (PM) region. Examination of the thalamus revealed labeled neurons in the intralaminar nuclei, in the medial part of the posterior nucleus (POm), and in the ventrobasal complex. These results indicate that the dorsolateral neostriatum integrates sensorimotor information from multiple sensorimotor representations in the thalamus and cortex.
The lateralization of functions to individual hemispheres of the mammalian brain remains, with the exception of the human brain, unresolved. The aim of this work was to investigate the ability to discriminate between falling and rising frequency-modulated (FM) stimuli in rats with unilateral or bilateral lesions of the auditory cortex (AC). Using an avoidance conditioning procedure, thirsty rats were trained to drink in the presence of a rising FM tone and to stop drinking when a falling FM tone was presented. Rats with a lesion of the AC were able to learn to discriminate between rising and falling FM tones; however, they performed significantly worse than did control rats. A greater deficit in the ability to discriminate the direction of frequency modulation was observed in rats with a right or bilateral AC lesion. The discrimination performance (DP) in these rats was significantly worse than the DP in rats with a left AC lesion. Animals with a right or bilateral AC lesion improved their DP mainly by recognizing the pitch at the beginning of the stimuli. The lesioning of the AC in trained animals caused a significant decrease in DP, down to chance levels. Retraining resulted in a significant increase in DP in rats with a left AC lesion; animals with a right lesion improved only slightly. The results demonstrate a hemispheric asymmetry of the rat AC in the recognition of FM stimuli and indicate the dominance of the right AC in the discrimination of the direction of frequency modulation.
Age-related changes in NADPH-diaphorase (NADPH-d)-positive neurons were examined in the auditory cortex of young (3 months old) and very old (36 months old) rats (strain Long Evans). In very old rats a significant reduction was found in the thickness of the auditory cortex, to 54% of that in young animals, as well as changes in the shape and configuration of nerve cell bodies and dendrites. Quantitative analysis demonstrated an age-related increase in the number of dendritic segments and dendritic branching points. The length of dendrites in NADPH-d-positive neurons and their density increased in very old rats. The total number of NADPH-d-positive neurons within the Te 1 and Te 3 fields was 13% lower in the old rats than in the young.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.