This study assesses seasonal particle size distribution (PSD) dynamics inside a waste stabilization ponds (WSP) (Buguruni, Tanzania) to understand settling dynamics of wastewater particles with an interest in helminth eggs. Results indicate that particles coming into the pond are mainly supracolloidal and settleables with 52.9% and 45.6%, respectively, in dry season and 48.9% and 49.9%, respectively, in wet season. Inflow PSD is a unimodal distribution that splits into settling and suspended PSDs, with an indication of particle breakage, as shown by the increased volume of smaller particles and hence the appearance of a bimodal distribution for the suspended particles. Up to 61.5% and 45.2% of particles that fall within the size range of helminths eggs are suspended during dry and wet seasons, respectively, with the potential to be carried in the effluent and to cause contamination.
This study assessed the impacts of climate change on streamflow in the data-scarce Upper Ruvu River watershed (URRW). The Long Ashton Research Station Weather Generator (LARS-WG) was employed for generating the future ensemble-mean climate scenario based on six global circulation models (GCMs), under two representative concentration pathways (RCPs: RCP4.5 and RCP8.5). The future projections were made in two periods (2041–2060 and 2081–2100), and the baseline period (1951–1978) was used as a reference. The watershed hydrology was represented by the Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS) model, which was calibrated and validated by using 5 and 4 years of streamflow data, respectively. Results indicate that the rainfall and minimum and maximum temperatures will increase in both periods, under both scenarios. This will potentially affect the streamflow that is projected to increase from March to August and decrease from September to February. The mean annual streamflow could potentially change from 48 m3/s in the baseline period to 45.6 and 56.5 m3/s during 2041–2060, and 52.4 and 67.4 m3/s during 2081–2100, under RCP4.5 and RCP8.5, respectively. The minimum and maximum streamflows are also predicted to change in both periods, under both scenarios. Considering these results, the climate change will have significant impacts on the streamflows of the URRW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.