In this work, we report record electron mobility values in unintentionally doped β-Ga2O3 films grown by metal-organic chemical vapor deposition. Using degenerately Sn-doped regrown n+ β-Ga2O3 contact layers, we were able to maintain Ohmic contact to the β-Ga2O3 films down to 40 K, allowing for reliable temperature-dependent Hall measurement. An electron mobility of 176 cm2/V s and 3481 cm2/V s were measured at room temperature and 54 K, respectively. The room and low temperature mobilities are both among the highest reported values in a bulk β-Ga2O3 film. A low net background charge concentration of 7.4 × 1015 cm−3 was confirmed by both temperature dependent Hall measurement and capacitance-voltage measurement. The feasibility of achieving low background impurity concentration and high electron mobility paves the road for the demonstration of high performance power electronics with high breakdown voltages and low on-resistances.
We report on the fabrication and characterization of solar blind photodetectors (SBPs) based on undoped β‐Ga2O3 and Zn doped (∼5 × 1020 cm−3) β‐Ga2O3 (ZnGaO) epitaxial films with cutoff wavelength of ∼260 nm. The epilayers were grown on c‐sapphire by the metal organic chemical vapor deposition technique and their structural, electrical and optical properties were characterized using various methods. As grown films have a large number of defects, resulting in detectors with enhanced internal gain, hence, high spectral responsivity >103 A/W. Post growth annealing in oxygen improved the quality of the epilayers, leading to detectors with reduced dark current (∼nA to ∼pA) and increased out of band rejection ratio. At 20 V bias, a ZnGaO detector showed a peak responsivity of 210 A/W (at 232 nm) and an out of band rejection ratio (i.e., R232 nm/R320 nm) of 5 × 104. Alternatively, for a β‐Ga2O3 detector these parameters were found to be five times and three times lower, respectively, suggesting that ZnGaO detectors have superior performance characteristics. These results provide a roadmap toward achieving high responsivity SBPs based on epitaxial ZnGaO films, laying a solid foundation for future applications.
We report on the growth of β-Ga2O3 thin films using trimethylgallium (TMGa) as a source for gallium and pure O2 for oxidation. The growth rate of the films was found to linearly increase with the increase in the molar flow rate of TMGa and reach as high as ∼6 μm/h at a flow rate of 580 μmol/min. High purity, lightly Si-doped homoepitaxial β-Ga2O3 films with a good surface morphology, a record low temperature electron mobility exceeding 23 000 cm2/V s at 32 K, and an acceptor concentration of 2 × 1013 cm−3 were realized, showing an excellent purity film. Films with room temperature (RT) electron mobilities ranging from 71 cm2/V s to 138 cm2/V s with the corresponding free carrier densities between ∼1.1 × 1019 cm−3 and ∼1.5 × 1016 were demonstrated. For layers with the doping concentration in the range of high-1017 and low-1018 cm−3, the RT electron mobility values were consistently more than 100 cm2/V s, suggesting that TMGa is suitable to grow channel layers for lateral devices, such as field effect transistors. The results demonstrate excellent purity of the films produced and confirm the suitability of the TMGa precursor for the growth of device quality β-Ga2O3 films at a fast growth rate, meeting the demands for commercializing Ga2O3-based high voltage power devices by metalorganic chemical vapor deposition.
We report on a high performance Pt/n−Ga2O3/n+Ga2O3 solar blind Schottky photodiode that has been grown by metalorganic chemical vapor deposition. The active area of the photodiode was fabricated using ∼30 Å thick semi-transparent Pt that has up to 90% transparency to UV radiation with wavelengths < 260 nm. The fabricated photodiode exhibited Schottky characteristics with a turn-on voltage of ∼1 V and a rectification ratio of ∼108 at ±2 V and showed deep UV solar blind detection at 0 V. The Schottky photodiode exhibited good device characteristics such as an ideality factor of 1.23 and a breakdown voltage of ∼110 V. The spectral response showed a maximum absolute responsivity of 0.16 A/W at 222 nm at zero bias corresponding to an external quantum efficiency of ∼87.5%. The cutoff wavelength and the out of band rejection ratio of the devices were ∼260 nm and ∼104, respectively, showing a true solar blind operation with an excellent selectivity. The time response is in the millisecond range and has no long-time decay component which is common in photoconductive wide bandgap devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.