We report on the fabrication and characterization of solar blind photodetectors (SBPs) based on undoped β‐Ga2O3 and Zn doped (∼5 × 1020 cm−3) β‐Ga2O3 (ZnGaO) epitaxial films with cutoff wavelength of ∼260 nm. The epilayers were grown on c‐sapphire by the metal organic chemical vapor deposition technique and their structural, electrical and optical properties were characterized using various methods. As grown films have a large number of defects, resulting in detectors with enhanced internal gain, hence, high spectral responsivity >103 A/W. Post growth annealing in oxygen improved the quality of the epilayers, leading to detectors with reduced dark current (∼nA to ∼pA) and increased out of band rejection ratio. At 20 V bias, a ZnGaO detector showed a peak responsivity of 210 A/W (at 232 nm) and an out of band rejection ratio (i.e., R232 nm/R320 nm) of 5 × 104. Alternatively, for a β‐Ga2O3 detector these parameters were found to be five times and three times lower, respectively, suggesting that ZnGaO detectors have superior performance characteristics. These results provide a roadmap toward achieving high responsivity SBPs based on epitaxial ZnGaO films, laying a solid foundation for future applications.
We report on a high performance Pt/n−Ga2O3/n+Ga2O3 solar blind Schottky photodiode that has been grown by metalorganic chemical vapor deposition. The active area of the photodiode was fabricated using ∼30 Å thick semi-transparent Pt that has up to 90% transparency to UV radiation with wavelengths < 260 nm. The fabricated photodiode exhibited Schottky characteristics with a turn-on voltage of ∼1 V and a rectification ratio of ∼108 at ±2 V and showed deep UV solar blind detection at 0 V. The Schottky photodiode exhibited good device characteristics such as an ideality factor of 1.23 and a breakdown voltage of ∼110 V. The spectral response showed a maximum absolute responsivity of 0.16 A/W at 222 nm at zero bias corresponding to an external quantum efficiency of ∼87.5%. The cutoff wavelength and the out of band rejection ratio of the devices were ∼260 nm and ∼104, respectively, showing a true solar blind operation with an excellent selectivity. The time response is in the millisecond range and has no long-time decay component which is common in photoconductive wide bandgap devices.
The authors report on high spectral responsivity (SnxGa1 − x)2O3 Schottky UV photodetectors grown by plasma-assisted molecular beam epitaxy on β-Ga2O3 substrates. Schottky devices exhibited peak responsivities ranging from 49 to 194 A/W, with peak responsivity and wavelength position increasing systematically for higher Sn concentration from x = 0.01 to 0.18. Dark currents for the devices ranged from <1 nA to 3 μA with rise and fall times in the 0.21–3 s time range, with slower response times likely due to photoconductive gain caused by trapped holes. Incorporation of up to 18% Sn into the tin gallium oxide (TGO) devices resulted in a redshift in the peak responsivity position, ranging from 5.19 to 4.86 eV, demonstrating tunability within the UV-C spectral region through Sn concentration adjustment. The authors believe this to be the highest reported responsivity for a planar Ga2O3-based Schottky photodetector to date, suggesting that TGO based UV-C Schottky detectors are an attractive approach toward deep-UV sensing applications.
The work presents a comparative study on the effects of In incorporation in the channel layer of AlGaN/GaN type-II heterostructures grown on c-plane sapphire by Plasma Assisted Molecular Beam Epitaxy. The structural characterizations of these samples were performed by High-Resolution X-Ray Diffraction (HRXRD), X-ray Reflectivity (XRR), Field Emission Scanning Electron Microscopy, and High Resolution Transmission Electron Microscopy. The two-dimensional electron gas in the AlGaN/GaN and AlGaN/InGaN interface was analyzed by electrochemical capacitance voltage and compared with theoretical results based on self-consistent solution of Schördinger–Poisson equations. The carrier profile shows enhanced confinement in InGaN channel (1.4393 × 1013 cm−2 compared to 1.096 × 1013 cm−2 in GaN). On the basis of HRXRD measurements, the stress-strain of the layers was examined. The c- and a-lattice parameters of the epilayers as well as in-plane and out-of plane strains were determined from the ω-2θ for symmetric scan and ω-Xθ (X represents the coupling coefficient) for asymmetric scan. Strain, tilt, and correlation lengths were calculated from Williamson–Hall plots, whereas stress was examined from modified plot of the same data assuming Uniform Stress Deformation Model. Moreover, the twist angle was measured from skew symmetric scan of (102), (103), and (105) plane along with (002) symmetric plane. The composition and strain/relaxation state of the epilayers were observed in detail by reciprocal space mapping (RSM). The symmetric (002) triple axis RSM and asymmetric (105 and 114) double axis RSM of grazing incidence and exit geometry were carried out on each sample. The defect density was measured from HRXRD curves of skew symmetric (002) and (102) reflection plane. The Al and In mole fraction and strain states of the layers were calculated by fitting the experimental curves with computer simulations and compared with theoretical findings based on elastic theory. The thicknesses of the layers and roughness of the interfaces were measured from simulation of the nominal structure by fitting with XRR experimental curves. The HRXRD measured thicknesses of the layers were further confirmed by cross sectional electron micrographs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.