Beneficial insect communities on farms are influenced by site- and landscape-level factors, with pollinator and natural enemy populations often associated with semi-natural habitat remnants. They provide ecosystem services essential for all agroecosystems. For smallholders, natural pest regulation may be the only affordable and available option to manage pests. We evaluated the beneficial insect community on smallholder bean farms (Phaseolus vulgaris L.) and its relationship with the plant communities in field margins, including margin trees that are not associated with forest fragments. Using traps, botanical surveys and transect walks, we analysed the relationship between the floral diversity/composition of naturally regenerating field margins, and the beneficial insect abundance/diversity on smallholder farms, and the relationship with crop yield. More flower visits by potential pollinators and increased natural enemy abundance measures in fields with higher plant, and particularly tree, species richness, and these fields also saw improved crop yields. Many of the flower visitors to beans and potential natural enemy guilds also made use of non-crop plants, including pesticidal and medicinal plant species. Selective encouragement of plants delivering multiple benefits to farms can contribute to an ecological intensification approach. However, caution must be employed, as many plants in these systems are introduced species.
Background Many crops are dependent on pollination by insects. Habitat management in agricultural landscapes can support pollinator services and even augment crop production. Common bean (Phaseolus vulgaris L.) is an important legume for the livelihoods of smallholder farmers in many low-income countries, particularly so in East Africa. While this crop is autogamous, it is frequently visited by pollinating insects that could improve yields. However, the value of pollination services to common beans (Kariasii) yield is not known. Methods We carried out pollinator-exclusion experiments to determine the contribution of insect pollinators to bean yields. We also carried out a fluorescent-dye experiment to evaluate the role of field margins as refuge for flower-visitors. Results Significantly higher yields, based on pods per plant and seeds per pod, were recorded from open-pollinated and hand-pollinated flowers compared to plants from which pollinators had been excluded indicating that flower visitors contribute significantly to bean yields. Similarly, open and hand-pollinated plants recorded the highest mean seed weight. Extrapolation of yield data to field scale indicated a potential increase per hectare from 681 kg in self-pollinated beans to 1,478 kg in open-pollinated beans indicating that flower visitors contributed significantly to crop yield of beans. Our marking study indicated that flower-visiting insects including bees, flies and lepidopterans moved from the field margin flowers into the bean crop. Overall, these results show that insect pollinators are important for optimising bean yields and an important food security consideration on smallholder farms. Field margin vegetation also provides habitat for flower-visiting insects that pollinate beans. Hence, non-crop habitats merit further research focusing on establishing which field margin species are most important and their capacity to support other ecosystem services such as natural pest regulation or even pests.
Pot experiment was carried out to determine the allelopathic effects of Datura stramonium on leaf chlorophyll content, root and shoot elongation, fresh and dry weight of two wild plant species: Cenchrus ciliaris and Neonotonia wightii. Different concentrations (0%, 25%, 50%, 75% and 100%) from seed and leaf extracts of D. stramonium were used to investigate the allelopathic effects of D. stramonium on growth of tested species. The total chlorophyll content of N. wightii was significantly reduced in all plants treated with both aqueous seed and leaf extracts of D. stramonium. In C. ciliaris, the total chlorophyll content was also significantly reduced for those plants treated with aqueous seed extract and leaf extract from D. stramonium. Relative to the control treatments, there was greater reduction in root and shoot length which was observed in higher concentrations of aqueous seed and leaf extracts. Fresh and dry weight of tested species significantly decreased after being treated with both seed and leaf aqueous extracts of D. stramonium. It was found that the allelopathic effect of aqueous seed and leaf extracts from D. stramonium on tested species was concentration-dependent. The inhibitory effects on all tested species increased as the concentration of both extracts increased from 0% to 100%. This study concluded that aqueous seed and leaf extract of D. stramonium have allelopathic effects on leaf chlorophyll content, root and shoot length, fresh and dry weight of grass (C. ciliaris) and legume (N. wightii) species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.