The use of cellular phones is increasing in society, but due to the limited battery capacity of cell phones, it is necessary to charge the battery when travelling in the long distances. The Savonius type wind turbine has a potential as an energy source harvesting the wind energy flowing around the car. However, due to the available space on the car, careful design of Savonius vertical axis wind turbine for vehicle is necessary. The research is conducted numerically using MATLAB software. The wind speed, Reynolds number, and electric power output are numerically simulated to obtain the swept area design. Innovative PLA material in the design is also investigated by simulating the effect of mass inertia moment to the design. This design of Savonius vertical axis wind turbine for vehicle is expected to charge maximum four cell phone batteries with the total electrical output of 60 W. The optimum swept area design of Savonius vertical axis wind turbine for vehicle is 0.150 m 2 using 3 fins, PLA filament material, with an overlap of 5.3 cm, and a diameter for each blade 22 cm according to the overlap ratio used of 0.242. This Savonius vertical axis wind turbine design is feasible as an energy source for vehicle owing to its compact design, innovative material used in the design, and providing the electric power demand in the vehicle.
Studies of condensation in several cooling systems have been conducted. However, the mode of condensation in two-phase cooling systems to achieve a high rate of condensation in compact devices has not been explored. Condensation phenomena, indeed, is a key parameter in designing a thermosyphon water cooled condenser system. The analysis of this condensation phenomena has been done numerically by implementing the governing equations and boundary conditions in commercial MATLAB software. Steady-state laminar film condensation on the radial system is assumed as a condensation phenomenon between vapor and the outer surface of coolant coil. There is a good agreement between experimental and simulation results. Furthermore, for 0.3 LPM 10 °C, it is found the standard deviation of 0.3 %. This small standard deviation indicates the good accuracy of the simulation. At a constant mass flow rate of water, the higher inlet water temperature will result in a higher Nusselt number of water. Furthermore, at the same Nusselt number of water, the lower inlet water temperature obtained a higher film condensation rate. Nusselt number of film condensation increases as the Nusselt number of water decreases at the various constant of mass flow rate of water. Additionally, the lower inlet water temperature will result in a lower Nusselt number of water. The value of Reynold number film condensation increases as Reynold numbers and Nusselt number of water increase. At various constant mass flow rates of the water, at the same Nusselt number of water, the Reynold number of film condensation increases with lower inlet water temperature. The lower inlet water temperature increases the value of Reynold number of film condensation leading to more wavy and turbulent flow. The present study provides guidelines for thermal management engineers to design and fabricate compact cooling systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.