Cities must adapt their drainage systems to cope with the effects of land use and climate change on growing flood risk. However, the development of robust adaptation strategies remains a challenge due to the deep uncertainty surrounding future conditions. To address this problem, an Adaptation Tipping Points (ATP) approach was utilised to investigate the impacts of future rainfall with respect to increases in both depth and intensity on an urban drainage system. A set of adaptation pathways was generated to assess how the drainage system could be adapted using a range of infrastructure solutions. The most effective combination of adaptations to increase the system's ATP was an increase in system storage followed by green infrastructure solutions to add additional capacity to the system. The methodology enabled no‐regret adaptation by proposing a set of selected interventions that can be incrementally implemented to achieve maximal combined effect. The resulting pathways effectively communicate to decision makers how short‐term solutions allow for long‐term adaptation and sustainable development. The ATP approach proved to be an effective tool for decision‐making that provided a structured approach for the long‐term planning of urban drainage systems.
Antifragility is a system property that results in systems becoming increasingly resitant to external shocks by being exposed to them. These systems have the counter-intuitive property of benefiting from uncertain conditions. This paper presents one of the first known applications of antifragility to water infrastructure systems, and outlines the development of antifragility at the city scale through the use of a bi-modal strategy, local governance, and data collection. The data can then be shared between cities to establish what heuristics are effective in the management of water systems in order to develop increasingly robust and antifragile infrastructure. The systems architecture presented results in a management paradigm that is able to deliver reliable water systems despite highly uncertain future conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.