Pancreatic cancer is almost invariably associated with mutations in the KRAS gene, most commonly KRAS G12D , that result in a dominant-active form of the KRAS GTPase. However, how KRAS mutations promote pancreatic carcinogenesis is not fully understood, and whether oncogenic KRAS is required for the maintenance of pancreatic cancer has not been established. To address these questions, we generated two mouse models of pancreatic tumorigenesis: mice transgenic for inducible Kras G12D , which allows for inducible, pancreas-specific, and reversible expression of the oncogenic Kras G12D , with or without inactivation of one allele of the tumor suppressor gene p53. Here, we report that, early in tumorigenesis, induction of oncogenic Kras G12D reversibly altered normal epithelial differentiation following tissue damage, leading to precancerous lesions. Inactivation of Kras G12D in established precursor lesions and during progression to cancer led to regression of the lesions, indicating that Kras G12D was required for tumor cell survival. Strikingly, during all stages of carcinogenesis, Kras G12D upregulated Hedgehog signaling, inflammatory pathways, and several pathways known to mediate paracrine interactions between epithelial cells and their surrounding microenvironment, thus promoting formation and maintenance of the fibroinflammatory stroma that plays a pivotal role in pancreatic cancer. Our data establish that epithelial Kras G12D influences multiple cell types to drive pancreatic tumorigenesis and is essential for tumor maintenance. They also strongly support the notion that inhibiting Kras G12D , or its downstream effectors, could provide a new approach for the treatment of pancreatic cancer.
Regulatory T cells (Treg) are abundant in human and mouse pancreatic cancer. To understand the contribution to the immunosuppressive microenvironment, we depleted Tregs in a mouse model of pancreatic cancer. Contrary to our expectations, Treg depletion failed to relieve immunosuppression and led to accelerated tumor progression. We show that Tregs are a key source of TGFβ ligands and, accordingly, their depletion reprogramed the fi broblast population, with loss of tumor-restraining, smooth muscle actin-expressing fi broblasts. Conversely, we observed an increase in chemokines Ccl3, Ccl6 , and Ccl8 leading to increased myeloid cell recruitment, restoration of immune suppression, and promotion of carcinogenesis, an effect that was inhibited by blockade of the common CCL3/6/8 receptor CCR1. Further, Treg depletion unleashed pathologic CD4 + T-cell responses. Our data point to new mechanisms regulating fi broblast differentiation in pancreatic cancer and support the notion that fi broblasts are a heterogeneous population with different and opposing functions in pancreatic carcinogenesis. SIGNIFICANCE:Here, we describe an unexpected cross-talk between Tregs and fi broblasts in pancreatic cancer. Treg depletion resulted in differentiation of infl ammatory fi broblast subsets, in turn driving infi ltration of myeloid cells through CCR1, thus uncovering a potentially new therapeutic approach to relieve immunosuppression in pancreatic cancer.
Pancreatic cancer, one of the deadliest human malignancies, is almost invariably associated with the presence of an oncogenic form of Kras. Mice expressing oncogenic Kras in the pancreas recapitulate the step-wise progression of the human disease. The inflammatory cytokine interleukin 6 (IL6) is often expressed by multiple cell types within the tumor microenvironment. Here, we show that IL6 is required for the maintenance and progression of pancreatic cancer precursor lesions. In fact, the lack of IL6 completely ablates cancer progression even in presence of oncogenic Kras. Mechanistically, we show that IL6 synergizes with oncogenic Kras to activate the reactive oxygen species (ROS) detoxification program downstream of the MAPK/ERK signaling cascade. In addition, IL6 regulates the inflammatory microenvironment of pancreatic cancer throughout its progression, providing several signals that are essential for carcinogenesis. Thus, IL6 emerges as a key player at all stages of pancreatic carcinogenesis, and a potential therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.