Regulatory T cells (Treg) are abundant in human and mouse pancreatic cancer. To understand the contribution to the immunosuppressive microenvironment, we depleted Tregs in a mouse model of pancreatic cancer. Contrary to our expectations, Treg depletion failed to relieve immunosuppression and led to accelerated tumor progression. We show that Tregs are a key source of TGFβ ligands and, accordingly, their depletion reprogramed the fi broblast population, with loss of tumor-restraining, smooth muscle actin-expressing fi broblasts. Conversely, we observed an increase in chemokines Ccl3, Ccl6 , and Ccl8 leading to increased myeloid cell recruitment, restoration of immune suppression, and promotion of carcinogenesis, an effect that was inhibited by blockade of the common CCL3/6/8 receptor CCR1. Further, Treg depletion unleashed pathologic CD4 + T-cell responses. Our data point to new mechanisms regulating fi broblast differentiation in pancreatic cancer and support the notion that fi broblasts are a heterogeneous population with different and opposing functions in pancreatic carcinogenesis.
SIGNIFICANCE:Here, we describe an unexpected cross-talk between Tregs and fi broblasts in pancreatic cancer. Treg depletion resulted in differentiation of infl ammatory fi broblast subsets, in turn driving infi ltration of myeloid cells through CCR1, thus uncovering a potentially new therapeutic approach to relieve immunosuppression in pancreatic cancer.
Highlights d Macrophages polarized by pancreatic cancer cells release pyrimidine nucleosides d Pyrimidine release is a property of alternatively activated macrophage metabolism d Deoxycytidine from macrophages inhibits gemcitabine treatment of cancer cells d Targeting macrophages enhances gemcitabine treatment of pancreatic cancer
Combinatorial strategies are needed to overcome the resistance of pancreatic cancer to immune checkpoint blockade (ICB). DNA damage activates the innate immune response and improves ICB efficacy. Because ATM is an apical kinase in the radiation-induced DNA damage response, we investigated the effects of ATM inhibition and radiation on pancreatic tumor immunogenicity. ATM was inhibited through pharmacologic and genetic strategies in human and murine pancreatic cancer models both in vitro and in vivo. Tumor immunogenicity was evaluated after ATM inhibition alone and in combination with radiation by assessing TBK1 and Type I interferon (T1IFN) signaling as well as tumor growth following PD-L1/PD-1 checkpoint inhibition. Inhibition of ATM increased tumoral T1IFN expression in a cGAS/STING-independent, but TBK1and SRC-dependent, manner. The combination of ATM inhibition with radiation further enhanced TBK1 activity, T1IFN production, and antigen presentation. Furthermore, ATM silencing increased PD-L1 expression and increased the sensitivity of pancreatic tumors to PD-L1-blocking antibody in association with increased tumoral CD8 þ T cells and established immune memory. In patient pancreatic tumors, low ATM expression inversely correlated with PD-L1 expression. Taken together, these results demonstrate that the efficacy of ICB in pancreatic cancer is enhanced by ATM inhibition and further potentiated by radiation as a function of increased tumoral immunogenicity, underscoring the potential of ATM inhibition in combination with ICB and radiation as an efficacious treatment strategy for pancreatic cancer.Significance: This study demonstrates that ATM inhibition induces a T1IFN-mediated innate immune response in pancreatic cancer that is further enhanced by radiation and leads to increased sensitivity to anti-PD-L1 therapy.See related commentary by Gutiontov and Weichselbaum, p. 3815
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.