A very sensitive experimental setup for accurate wavelength-dependent hyper-Rayleigh scattering (HRS) measurements of the molecular first hyperpolarizability beta in the broad fundamental wavelength range of 600 to 1800 nm is presented. The setup makes use of a stable continuously tunable picosecond optical parametric amplifier with kilohertz repetition rate. To correct for multi-photon fluorescence, a small spectral range around the second harmonic wavelength is detected in parallel using a spectrograph coupled to an intensified charge-coupled device. Reliable calibration against the pure solvent is possible over the full accessible spectral range. An extensive set of wavelength-dependent HRS calibration data for a wide range of solvents is presented, and very accurate measurements of the beta dispersion of the well-known nonlinear optical chromophore Disperse Red 1 are demonstrated.
Abstract. Since the nineties, atmospheric measurement systems have been deployed at Reunion Island, mainly for monitoring the atmospheric composition in the framework of NDSC/NDACC (Network for the Detection of Stratospheric
⁎Among heme-based sensors, recent phylogenomic and sequence analyses have identified 34 globin coupled sensors (GCS), to which an aerotactic or gene-regulating function has been tentatively ascribed. Here, the structural and biochemical characterization of the globin domain of the GCS from Geobacter sulfurreducens (GsGCS 162 ) is reported. A combination of X-ray crystallography (crystal structure at 1.5 Å resolution), UV-vis and resonance Raman spectroscopy reveals the ferric GsGCS 162 as an example of bishistidyl hexa-coordinated GCS. In contrast to the known hexa-coordinated globins, the distal heme-coordination in ferric GsGCS 162 is provided by a His residue unexpectedly located at the E11 topological site. Furthermore, UV-vis and resonance Raman spectroscopy indicated that ferrous deoxygenated GsGCS 162 is a penta-/hexa-coordinated mixture, and the heme hexa-to-penta-coordination transition does not represent a rate-limiting step for carbonylation kinetics. Lastly, electron paramagnetic resonance indicates that ferrous nitrosylated GsGCS 162 is a penta-coordinated species, where the proximal HisF8-Fe bond is severed. Abbreviations used: GCS, globin-coupled sensor; GsGCS 162 , globin domain of GCS from Geobacter sulfurreducens; PAS, an acronym formed from the names of the first three proteins (the Period clock protein of Drosophila, the Aryl hydrocarbon receptor nuclear translocator of vertebrates, and the Single-minded protein of Drosophila) recognized as sharing such sensor motif; CooA, transcriptional activator of coo operons encoding proteins required to metabolize CO as a sole energy
Abstract. This study presents results from the European Centre for Medium-Range Weather Forecasts (ECMWF) carbon dioxide (CO2) analysis system where the atmospheric CO2 is controlled through the assimilation of column-averaged dry-air mole fractions of CO2 (XCO2) from the Greenhouse gases Observing Satellite (GOSAT). The analysis is compared to a free-run simulation (without assimilation of XCO2), and they are both evaluated against XCO2 data from the Total Carbon Column Observing Network (TCCON). We show that the assimilation of the GOSAT XCO2 product from the Bremen Optimal Estimation Differential Optical Absorption Spectroscopy (BESD) algorithm during the year 2013 provides XCO2 fields with an improved mean absolute error of 0.6 parts per million (ppm) and an improved station-to-station bias deviation of 0.7 ppm compared to the free run (1.1 and 1.4 ppm, respectively) and an improved estimated precision of 1 ppm compared to the GOSAT BESD data (3.3 ppm). We also show that the analysis has skill for synoptic situations in the vicinity of frontal systems, where the GOSAT retrievals are sparse due to cloud contamination. We finally computed the 10-day forecast from each analysis at 00:00 UTC, and we demonstrate that the CO2 forecast shows synoptic skill for the largest-scale weather patterns (of the order of 1000 km) even up to day 5 compared to its own analysis.
Abstract. The TCCON (Total Carbon Column Observing Network) FTIR (Fourier transform infrared) network provides highly accurate observations of greenhouse gas column-averaged dry-air mole fractions. As an important component of TCCON quality assurance, sealed cells filled with approximately 5 mbar of HCl are used for instrumental line shape (ILS) monitoring at all TCCON sites. Here, we introduce a calibration procedure for the HCl cells which employs a refillable, pressure-monitored reference cell filled with C 2 H 2 . Using this method, we identify variations of HCl purity between the TCCON cells as a non-negligible disturbance. The new calibration procedure introduced here assigns effective pressure values to each individual cell to account for additional broadening of the HCl lines. This approach will improve the consistency of the network by significantly reducing possible station-to-station biases due to inconsistent ILS results from different HCl cells. We demonstrate that the proposed method is accurate enough to turn the ILS uncertainty into an error source of secondary importance from the viewpoint of network consistency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.