This manuscript describes a unique class of locomotive robot: A soft robot, composed exclusively of soft materials (elastomeric polymers), which is inspired by animals (e.g., squid, starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a simple pneumatic valving system that operates at low pressures (<10 psi). A combination of crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This demonstration illustrates an advantage of soft robotics: They are systems in which simple types of actuation produce complex motion.biomimetic | mobile R obotics developed to increase the range of motions and functions open to machines, and to build into them some of the characteristics [including autonomous motion (1-3), adaptability to the environment (4-7), and capability of decision making (8, 9)] of animals, particularly animals with skeletons. Most mobile robots are built with hard materials (hard robots), either by adding treads or wheels (10, 11) to conventional machines to increase their mobility, or by starting with conceptual models based on animals [e.g., Big Dog (12) and many others (13-15)], and replicating some of their features in hard structures. Although robotics has made enormous progress in the last 50 years, hard robots still have many limitations. Some of these limitations are mechanical, and include instability when moving in difficult terrain; some have to do with the ranges of motions afforded by actuators and structures (e.g., metal rods, mechanical joints, and electric motors); some stem from the complexity in control (especially when handling materials and structures that are soft, delicate, and complex in shape). Hard robots fabricated from metals are also often heavy and expensive, and thus are not suitable for some applications.New classes of robots may thus find uses in applications where conventional hard robots are unsuitable. We are interested in a unique class of robots: That is, soft robots fabricated in materials (predominantly elastomeric polymers) that do not use a rigid skeleton to provide mechanical strength. The objective of this work is to demonstrate a soft robot that requires only simple design and control to generate mobility. In this demonstration, we begin to address some of the issues that have limited the development of soft robots. Instead of basing this and other designs on highly evolved animals as models, we are using simpler organisms [e.g., worms (16) and starfish (17)] for inspiration. These organisms, ones without internal skeletons, suggest designs that are simpler to make and are less expensive than conventional hard robots, and that may, in some respects, be more capable of complex motions and functions. Simple, inexpensive systems will probably not replace more complex and expensive ones, but may have different...
In areas from assembly of machines [1] to surgery, [2] and from deactivation of improvised explosive devices (IEDs) to unmanned flight, robotics is an important and rapidly growing field of science and technology. It is currently dominated by robots having hard body plans-constructions largely of metal structural elements and conventional joints [3] -and actuated by electrical motors, or pneumatic or hydraulic systems. Handling fragile objects-from the ordinary (fruit) to the important (internal organs)-is a frequent task whose importance is often overlooked and is difficult for conventional hard robots; moving across unknown, irregular, and shifting terrain is also. Soft robots may provide solutions to both of these classes of problems, and to others. Methods of designing and fabricating soft robots are, however, much less developed than those for hard robots. We wish to expand the methods and materials of chemistry and soft-materials science into applications in fully soft robots.A robot is an automatically controlled, programmable machine.[4] The limbs of animals or insects-structures typically based on rigid segments connected by joints with constrained ranges of motion [5]
Magnetic levitation (MagLev) enables 3D self‐assembly of diamagnetic objects with control over many aspects of position and orientation. This work demonstrates the ability of MagLev to position and align components, such as mirrors, filters, lenses, and soft objects, without mechanical support.
This manuscript describes a hybrid robotic system combining hard and soft sub-systems. This hybrid comprises a wheeled robot (an iRobot Create©; hard) and a four-legged quadruped (soft).It is capable (using a simple, wireless control system) of rapid locomotion over flat terrain (using the wheeled hard robot), and of gripping and retrieval of an object (using the soft robot). The utility of this system is demonstrated by performing a mission requiring the capabilities of both components: retrieving an object (iPod Nano®) from the center of a room. This class of robothybrids comprising hard and soft systems functioning synergistically-is capable of performing tasks that neither can do alone. In contrast to specialised hard robotic arms with grippers (capable of performing some of the functions we describe here), which are complex, relatively expensive, and require sophisticated controls, this hybrid system is easy to construct, simple to control, and low in cost. The soft robotic system in the hybrid is lightweight, disposable if contaminated or damaged, and capable of multiple functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.