The Massive Auditory Lexical Decision (MALD) database is an end-to-end, freely available auditory and production data set for speech and psycholinguistic research, providing time-aligned stimulus recordings for 26,793 words and 9592 pseudowords, and response data for 227,179 auditory lexical decisions from 231 unique monolingual English listeners. In addition to the experimental data, we provide many precompiled listener- and item-level descriptor variables. This data set makes it easy to explore responses, build and test theories, and compare a wide range of models. We present summary statistics and analyses.
DIANA, an end-to-end computational model of spoken word recognition, was previously used to simulate auditory lexical decision experiments in Dutch. A single test conducted for North American English showed promising results as well. However, this simulation used a relatively small amount of data collected in the pilot phase of the Massive Auditory Lexical Decision (MALD) project. Additionally, already existing acoustic models were implemented. In this paper, we expand the analysis of MALD data by including a larger sample of both stimuli and participants. Acknowledging that most speech humans hear is conversational speech, we also test new acoustic models created using spontaneous speech corpora. Simulations successfully replicate expected trends in word competition and show plausible competitors as the signal unfolds, but acoustic model accuracy should be improved. Despite the number of responses per word being relatively small (never more than five), correlations between model estimates and participants' responses are moderate. Future directions in acoustic model training and simulating MALD data are discussed.
Osnovni cilj ovog istraživanja bio je da se utvrdi broj i sadržaj tipova ličnosti zasnovanih na skorovima ispitanika na dimenzijama modela Velikih pet. Za utvrđivanje tipova ličnosti korišćene su klaster analiza i analiza latentnih profila, te je drugi cilj istraživanja bilo ispitivanje kongruencije rešenja ekstrahovanih ovim metodama. Uzorak se sastojao od 842 ispitanika oba pola i starosti između 18 i 68 godina. Primenjen je upitnik BFI koji sadrži 44 stavke sa petostepenom skalom Likertovog tipa. Upitnik je pokazao zadovoljavajuća metrijska svojstva. Primenom dvoetapne kros-validacione procedure ekstrahovana su tri klastera. U analizi latentnih profila, rešenje sa tri klase se, takođe, pokazalo optimalnim. U oba slučaja, tipovi su imenovani kao „suzdržani“,„rezilijentni“ i „neadaptirani“. Suzdržani postižu prosečne skorove na svim dimenzijama, rezilijentni imaju niske skorove na skali Neuroticizam, a visoke na svim drugim dimenzijama, a ispitanici iz klastera neadaptiranih postižu visoke skorove na skali Neuroticizam, a niske na svim drugim dimenzijama. Vrednost Cohenovog kapa koeficijenta (κ = .70) ukazuje na visoku kongruenciju dva dobijena rešenja. Profil rezilijentnih, koji se izdvaja u okviru dominantne ARC (Asendorpf-Robins-Caspi) tipologije, dobijen je i u ovom istraživanju, što upućuje na njegovu kros-kulturalnu stabilnost. S druge strane, suzdržani i neadaptirani profili nisu u potpunosti podudarni s profilima hiperkontrolisanih i hipokontrolisanih iz ARC tipologije, iako je profil neadaptiranih, najčešće pod nazivom „nepoželjni“ izdvojen i u pojedinim drugim studijama. Rezultati ukazuju na značajnu, ali ne i potpunu, podudarnost sadržaja solucija ekstrahovanih dvema metodama, kao i na izvesne razlike između tipova ličnosti ekstrahovanih u našoj populaciji i rešenja identifikovanih u drugim kulturama.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.