A major obstacle to 3-dimensional tissue engineering is incorporation of a functional vascular supply to support the expanding new tissue. This is overcome in an in vivo intrinsic vascularization model where an arteriovenous loop (AVL) is placed in a noncollapsible space protected by a polycarbonate chamber. Vascular development and hypoxia were examined from 3 days to 112 days by vascular casting, morphometric, and morphological techniques to understand the model's vascular growth and remodeling parameters for tissue engineering purposes. At 3 days a fibrin exudate surrounded the AVL, providing a scaffold to migrating inflammatory, endothelial, and mesenchymal cells. Capillaries formed between 3 and 7 days. Hypoxia and cell proliferation were maximal at 7 days, followed by a peak in percent vascular volume at 10 days (23.20+/-3.14% compared with 3.59+/-2.68% at 3 days, P<0.001). Maximal apoptosis was observed at 112 days. The protected space and spontaneous microcirculatory development in this model suggest it would be applicable for in vivo tissue engineering. A temporal window in a period of intense angiogenesis at 7 to 10 days is optimal for exogenous cell seeding and survival in the chamber, potentially enabling specific tissue outcomes to be achieved.
a b s t r a c tHistioconductive approaches to soft-tissue defects use scaffolds seeded with lineage-and tissue-specific progenitors to generate tissue which should reside in equilibrium with adjacent tissue. Scaffolds guide histiogenesis by ensuring cell-cell and cell-matrix interactions. Hyaluronic acid-based (HA) preadipocyte-seeded scaffolds were evaluated for their adipo-conductive potential and efficacy in humans. Preadipocytes were isolated from lipoaspirate material and seeded on HA scaffolds. The cellular biohybrid (ADIPOGRAFT Ò ) and an acellular control scaffold (HYAFF Ò 11) were implanted subcutaneously. At specific time points (2, 8 and 16 weeks) explants were analyzed histopathologically with immunohistochemistry. No adverse tissue effects occurred. Volume loss and consistent degradation of the HYAFF Ò 11 scaffolds compared to the ADIPOGRAFT Ò group indicated progressive tissue integration. No consistent histological differences between both groups were observed. By 8 weeks all void spaces within the scaffolds were filled with cells with pronounced matrix deposition in the ADIPOGRAFT Ò bio-hybrids. Here we show that HA scaffolds were stable cell carriers and had the potential to generate volumeretaining tissue. However, no adipogenic differentiation was observed within the preadipocyte-seeded scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.