Summary
Tropical Southeast Asia, which harbors most of the Musaceae biodiversity, is one of the most species‐rich regions in the world. Its high degree of endemism is shaped by the region's tectonic and climatic history, with large differences between northern Indo‐Burma and the Malayan Archipelago. Here, we aim to find a link between the diversification and biogeography of Musaceae and geological history of the Southeast Asian subcontinent.The Musaceae family (including five Ensete, 45 Musa and one Musella species) was dated using a large phylogenetic framework encompassing 163 species from all Zingiberales families. Evolutionary patterns within Musaceae were inferred using ancestral area reconstruction and diversification rate analyses.All three Musaceae genera – Ensete, Musa and Musella – originated in northern Indo‐Burma during the early Eocene. Musa species dispersed from ‘northwest to southeast’ into Southeast Asia with only few back‐dispersals towards northern Indo‐Burma.Musaceae colonization events of the Malayan Archipelago subcontinent are clearly linked to the geological and climatic history of the region. Musa species were only able to colonize the region east of Wallace's line after the availability of emergent land from the late Miocene onwards.
A continuous development of the embryo and seedlings of the three species was observed from the moment the seeds were dispersed until seedlings emerged. A sequence of high summer temperatures followed by decreasing autumn and winter temperatures was required for all developmental processes to be completed. Although a time lag occurs between radicle protrusion and seedling emergence, the term 'epicotyl dormancy' does not apply here, due to the absence of a period of developmental arrest. Timing of first seedling emergence differed between the three species and could be related to differences in geographical distribution.
Summary
Assumptions about the germination ecology of alpine plants are presently based on individual species and local studies. A current challenge is to synthesise, at the global level, the alpine seed ecological spectrum.
We performed a meta‐analysis of primary data from laboratory experiments conducted across four continents (excluding the tropics) and 661 species, to estimate the influence of six environmental cues on germination proportion, mean germination time and germination synchrony; accounting for seed morphology (mass, embryo : seed ratio) and phylogeny.
Most alpine plants show physiological seed dormancy, a strong need for cold stratification, warm‐cued germination and positive germination responses to light and alternating temperatures. Species restricted to the alpine belt have a higher preference for warm temperatures and a stronger response to cold stratification than species whose distribution extends also below the treeline. Seed mass, embryo size and phylogeny have strong constraining effects on germination responses to the environment.
Globally, overwintering and warm temperatures are key drivers of germination in alpine habitats. The interplay between germination physiology and seed morphological traits further reflects pressures to avoid frost or drought stress. Our results indicate the convergence, at the global level, of the seed germination patterns of alpine species.
Phylogenies are a central and indispensable tool for evolutionary and ecological research. Even though most angiosperm families are well investigated from a phylogenetic point of view, there are far less possibilities to carry out large-scale meta-analyses at order level or higher. Here, we reconstructed a large-scale dated phylogeny including nearly 1/8th of all angiosperm species, based on two plastid barcoding genes, matK (incl. trnK) and rbcL. Novel sequences were generated for several species, while the rest of the data were mined from GenBank. The resulting tree was dated using 56 angiosperm fossils as calibration points. The resulting megaphylogeny is one of the largest dated phylogenetic tree of angiosperms yet, consisting of 36,101 sampled species, representing 8,399 genera, 426 families and all orders. This novel framework will be useful for investigating different broad scale research questions in ecological and evolutionary biology.
Germination and survival of water-impermeable seeds of 11 species of Geraniaceae and Malvaceae were monitored during dry storage and during burial in soil for up to 2.5 years. During dry storage, seeds of annual Geraniaceae became permeable and also lost their physiological dormancy. However, during burial in natural conditions, most seeds remained impermeable and viable, with no seasonal change in germination capacity. Germination in only one species (Geranium robertianum) was enhanced by daily alternating temperatures when seeds were exhumed in spring. Drying of exhumed seeds broke physical dormancy. Seeds of the perennial Geranium pratense gradually became permeable in a prolonged germination test of 31 weeks. Most seeds of Malva remained impermeable during dry storage. Buried seeds gradually germinated in situ, and exhumed seeds had a low germination capacity in all seasons. We concluded that dormancy of hard seeds in natural conditions may be broken by drying during summer, by specific temperature regimes or by gradual softening of the seed coat, ensuring the spread of germination over many seasons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.