Molecular-level insights into the entangled dynamics of high-molecular-weight chains, in particular of slower chain modes in regimes II−IV of the tube model, are still rare due to the lack of methods resolving the rather long associated time scales. On the theoretical side, new computer simulation methods are just reaching the relevant time scales in sufficiently large systems. Here, we confront results from a recent multiple-quantum proton NMR method with results from a novel lattice model. We address the concern that proton NMR, relying on the dipole−dipole couplings between nearby nuclei, is intrinsically sensitive not only to intrachain rotational motions which reflect the desired details of the tube model or possibly necessary modifications, but also to the translational diffusion of chains past each other via interchain dipole−dipole couplings. In order to critically assess the influence of the latter, we here present results of isotope-dilution experiments, in which the data reflect mainly tagged-chain dynamics. We find overall weak effects of interchain dipole−dipole couplings on the shape of the extracted orientation autocorrelation function and very good agreement of the experimental and the computer simulation data. We conclude that the NMR method as well as the novel lattice model faithfully reflects the universal features of entangled chain dynamics and in particular the deviations from simple tube-model predictions on a microscopic level.
In recent years, self-healing materials have attracted increasing attention due to their potentially spontaneous self-repairing ability after mechanical damage. Here, we focus on a supramolecular self-healing rubber based on fatty acids following the work of Leibler and co-workers. We study the heterogeneous network structure and hydrogen bond dynamics as well as its significant aging properties using several experimental techniques. NMR experiments reveal that the rubber is basically a two-component system, with a ∼85% fraction of material rich in hydrogen-bonded structures and associated aliphatic moieties, undergoing a glass transition just below ambient temperature, and the other one being comprised of more mobile aliphatic chains. Changes in the IR bands corresponding to the NH bending and CO stretching vibrations show that water in the rubber not only takes the role of a plasticizer, reducing the glass transition temperature of the main component, but also is involved in changes of the hydrogen-bonding network. On the basis of shear rheology experiments and proton low-field NMR, we deduce that the rubber undergoes irreversible chemical cross-linking reactions at temperatures above 110 °C, going along with a weakening of its self-healing ability.
Pulsed field gradient NMR is applied for monitoring the diffusion properties of guest molecules in hierarchical pore systems after pressure variation in the external atmosphere. Following previous studies with purely mesoporous solids, also in the material containing both micro- and mesopores (activated carbon MA2), the diffusivity of the guest molecules (cyclohexane) is found to be most decisively determined by the sample "history": at a given external pressure, diffusivities are always found to be larger if they are measured after pressure decrease (i.e., on the "desorption" branch) rather than after pressure increase (adsorption branch). Simple model consideration reproduces the order of magnitude of the measured diffusivities as well as the tendencies in their relation to each other and their concentration dependence.
Proton multiple-quantum time-domain NMR combined with time–temperature superposition is a powerful method to study entangled chain dynamics. Overcoming the previous limitation to regimes II–IV of the tube model, this study extends the method to regime I (localized Rouse motions) by use of a pulse sequence adapted to shorter times, thus covering all relevant regimes for the model case of poly(butadiene) with molecular weights (M) between 10 and 200 kDa. We determine a value for the entanglement time that is consistent with current rheological results and confirm a value below 1 for the time scaling exponent of the segmental orientation autocorrelation function (OACF) in regime I previously observed by other NMR techniques. The origins of deviations from tube-model predictions are assessed by focusing on the dynamics of the chain centers in end-chain deuterated triblock samples and by dilution of probe chains to 15% in a deuterated matrix with M of 2 MDa. The study is complemented by self-diffusion coefficients measured by pulsed-gradient NMR. Our OACF-based results for the terminal time reinforce the current consensus that below a chain length of 30–50 entanglements matrix effects cannot explain the nonideal M-scaling exponent of 3.4 but are responsible for an M-independent slowdown. The protracted approach of the pure local-reptation scaling in regime II is found to be only somewhat reduced for both chain centers and chains in a long matrix, confirming its generic intrachain origin. These microscopic insights could be compared with results from large-scale computer simulations and provide a gauge for theoretical approaches such as those dealing with constraint release and contour-length fluctuations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.