One of the most promising areas of health innovation is the application of artificial intelligence (AI), primarily in medical imaging. This article provides basic definitions of terms such as “machine/deep learning” and analyses the integration of AI into radiology. Publications on AI have drastically increased from about 100–150 per year in 2007–2008 to 700–800 per year in 2016–2017. Magnetic resonance imaging and computed tomography collectively account for more than 50% of current articles. Neuroradiology appears in about one-third of the papers, followed by musculoskeletal, cardiovascular, breast, urogenital, lung/thorax, and abdomen, each representing 6–9% of articles. With an irreversible increase in the amount of data and the possibility to use AI to identify findings either detectable or not by the human eye, radiology is now moving from a subjective perceptual skill to a more objective science. Radiologists, who were on the forefront of the digital era in medicine, can guide the introduction of AI into healthcare. Yet, they will not be replaced because radiology includes communication of diagnosis, consideration of patient’s values and preferences, medical judgment, quality assurance, education, policy-making, and interventional procedures. The higher efficiency provided by AI will allow radiologists to perform more value-added tasks, becoming more visible to patients and playing a vital role in multidisciplinary clinical teams.
Worldwide interest in artificial intelligence (AI) applications is growing rapidly. In medicine, devices based on machine/deep learning have proliferated, especially for image analysis, presaging new significant challenges for the utility of AI in healthcare. This inevitably raises numerous legal and ethical questions. In this paper we analyse the state of AI regulation in the context of medical device development, and strategies to make AI applications safe and useful in the future. We analyse the legal framework regulating medical devices and data protection in Europe and in the United States, assessing developments that are currently taking place. The European Union (EU) is reforming these fields with new legislation (General Data Protection Regulation [GDPR], Cybersecurity Directive, Medical Devices Regulation, In Vitro Diagnostic Medical Device Regulation). This reform is gradual, but it has now made its first impact, with the GDPR and the Cybersecurity Directive having taken effect in May, 2018. As regards the United States (U.S.), the regulatory scene is predominantly controlled by the Food and Drug Administration. This paper considers issues of accountability, both legal and ethical. The processes of medical device decision-making are largely unpredictable, therefore holding the creators accountable for it clearly raises concerns. There is a lot that can be done in order to regulate AI applications. If this is done properly and timely, the potentiality of AI based technology, in radiology as well as in other fields, will be invaluable.Teaching Points• AI applications are medical devices supporting detection/diagnosis, work-flow, cost-effectiveness.• Regulations for safety, privacy protection, and ethical use of sensitive information are needed.• EU and U.S. have different approaches for approving and regulating new medical devices.• EU laws consider cyberattacks, incidents (notification and minimisation), and service continuity.• U.S. laws ask for opt-in data processing and use as well as for clear consumer consent.
Drug-eluting bead transarterial chemoembolization (DEB-TACE) is a relative new endovascular treatment based on the use of microspheres to release chemotherapeutic agents within a target lesion with controlled pharmacokinetics. This aspect justifies the immediate success of DEB-TACE, that nowadays represents one of the most used treatments for unresectable hepatocellular carcinoma. However, there is no consensus about the choice of the best embolotherapy technique. In this review, we describe the available microspheres and report the results of the main comparative studies, to clarify the role of DEB-TACE in the hepatocellular carcinoma management. We underline that there is no evidence about the superiority of DEB-TACE over conventional TACE in terms of efficacy, but there may be some benefits with respect to safety especially with the improvement of new technologies.
This review focuses upon interactions and potential therapeutic targets in the 'vicious cycle' between hypoxia and neoangiogenesis following treatment of hepatocellular carcinoma with transarterial loco-regional therapies. Biomarkers correlated with angiogenesis have been studied by many authors as prognostic determinants following transarterial intrahepatic therapy. According to these results future therapies directed toward specific factors related to angiogenesis could play a significant role in preventing local tumor recurrence and remote metastasis.
Radiomics is an emerging translational field of medicine based on the extraction of high-dimensional data from radiological images, with the purpose to reach reliable models to be applied into clinical practice for the purposes of diagnosis, prognosis and evaluation of disease response to treatment. We aim to provide the basic information on radiomics to radiologists and clinicians who are focused on breast cancer care, encouraging cooperation with scientists to mine data for a better application in clinical practice. We investigate the workflow and clinical application of radiomics in breast cancer care, as well as the outlook and challenges based on recent studies. Currently, radiomics has the potential ability to distinguish between benign and malignant breast lesions, to predict breast cancer’s molecular subtypes, the response to neoadjuvant chemotherapy and the lymph node metastases. Even though radiomics has been used in tumor diagnosis and prognosis, it is still in the research phase and some challenges need to be faced to obtain a clinical translation. In this review, we discuss the current limitations and promises of radiomics for improvement in further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.