One of the most promising areas of health innovation is the application of artificial intelligence (AI), primarily in medical imaging. This article provides basic definitions of terms such as “machine/deep learning” and analyses the integration of AI into radiology. Publications on AI have drastically increased from about 100–150 per year in 2007–2008 to 700–800 per year in 2016–2017. Magnetic resonance imaging and computed tomography collectively account for more than 50% of current articles. Neuroradiology appears in about one-third of the papers, followed by musculoskeletal, cardiovascular, breast, urogenital, lung/thorax, and abdomen, each representing 6–9% of articles. With an irreversible increase in the amount of data and the possibility to use AI to identify findings either detectable or not by the human eye, radiology is now moving from a subjective perceptual skill to a more objective science. Radiologists, who were on the forefront of the digital era in medicine, can guide the introduction of AI into healthcare. Yet, they will not be replaced because radiology includes communication of diagnosis, consideration of patient’s values and preferences, medical judgment, quality assurance, education, policy-making, and interventional procedures. The higher efficiency provided by AI will allow radiologists to perform more value-added tasks, becoming more visible to patients and playing a vital role in multidisciplinary clinical teams.
This paper summarizes information about breast MRI to be provided to women and referring physicians. After listing contraindications, procedure details are described, stressing the need for correct scheduling and not moving during the examination. The structured report including BI-RADS® categories and further actions after a breast MRI examination are discussed. Breast MRI is a very sensitive modality, significantly improving screening in high-risk women. It also has a role in clinical diagnosis, problem solving, and staging, impacting on patient management. However, it is not a perfect test, and occasionally breast cancers can be missed. Therefore, clinical and other imaging findings (from mammography/ultrasound) should also be considered. Conversely, MRI may detect lesions not visible on other imaging modalities turning out to be benign (false positives). These risks should be discussed with women before a breast MRI is requested/performed. Because breast MRI drawbacks depend upon the indication for the examination, basic information for the most important breast MRI indications is presented. Seventeen notes and five frequently asked questions formulated for use as direct communication to women are provided. The text was reviewed by Europa Donna–The European Breast Cancer Coalition to ensure that it can be easily understood by women undergoing MRI.Key Points• Information on breast MRI concerns advantages/disadvantages and preparation to the examination• Claustrophobia, implantable devices, allergic predisposition, and renal function should be checked• Before menopause, scheduling on day 7–14 of the cycle is preferred• During the examination, it is highly important that the patient keeps still• Availability of prior examinations improves accuracy of breast MRI interpretationElectronic supplementary materialThe online version of this article (doi:10.1007/s00330-015-3807-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.