Many protist plankton are mixotrophs, combining phototrophy and phagotrophy. Their role in freshwater and marine ecology has emerged as a major developing feature of plankton research over recent decades. To better aid discussions, we suggest these organisms are termed “mixoplankton”, as “planktonic protist organisms that express, or have potential to express, phototrophy and phagotrophy”. The term “phytoplankton” then describes phototrophic organisms incapable of phagotrophy. “Protozooplankton” describes phagotrophic protists that do not engage in acquired phototrophy. The complexity of the changes to the conceptual base of the plankton trophic web caused by inclusion of mixoplanktonic activities are such that we suggest that the restructured description is termed the “mixoplankton paradigm”. Implications and opportunities for revision of survey and fieldwork, of laboratory experiments and of simulation modelling are considered. The main challenges are not only with taxonomic and functional identifications, and with measuring rates of potentially competing processes within single cells, but with decades of inertia built around the traditional paradigm that assumes a separation of trophic processes between different organisms. In keeping with the synergistic nature of cooperative photo- and phagotrophy in mixoplankton, a comprehensive multidisciplinary approach will be required to tackle the task ahead.
A broad diversity of sex-determining systems has evolved in eukaryotes. However, information on the mechanisms of sex determination for unicellular microalgae is limited, including for diatoms, key-players of ocean food webs. Here we report the identification of a mating type (MT) determining gene for the diatom Pseudo-nitzschia multistriata. By comparing the expression profile of the two MTs, we find five MT-biased genes, of which one, MRP3, is expressed exclusively in MT+ strains in a monoallelic manner. A short tandem repeat of specific length in the region upstream of MRP3 is consistently present in MT+ and absent in MT− strains. MRP3 overexpression in an MT− strain induces sex reversal: the transgenic MT− can mate with another MT− strain and displays altered regulation of the other MT-biased genes, indicating that they lie downstream. Our data show that a relatively simple genetic program is involved in defining the MT in P. multistriata.
The temporal variability of planktonic ciliates was studied in an extreme oligotrophic environment with special focus on trophic modes and size classes. Abundance, biomass, size classes, mixotrophy vs. heterotrophy, and species composition of planktonic ciliates were investigated focusing on temporal (samples collected on a monthly basis during 2019) and vertical (7 depth layers in the euphotic zone, from surface to 120 m) distribution at a coastal station in the oligotrophic Eastern Mediterranean. Abundance was in general very low (20 to 1150 cells L–1), except for September, which presented the highest abundance and biomass. Aloricate species dominated the ciliate community in all months and depths (% contribution from 77% in September to 99% in April). In general, oligotrichs presented maximum abundance at 2–10 m (except for June, July, and November: 100–120 m) whereas choreotrichs were more homogeneously distributed [and showed maxima at deep chlorophyll maximum (DCM)]. Small heterotrophs dominated the ciliate community at all depths and months, on average by 76% (they were 3 times more abundant than mixotrophs in terms of abundance and 2.5 times in terms of biomass). They were equally distributed both vertically and seasonally (and also in terms of size classes). In contrast, mixotrophs were found mainly at the surface layer to 20 m throughout the year, except for June and July (max at 100, 50 m). On average, 63% of integrated aloricate abundance was species <30 μm, of which 25% were mixotrophs. During the stratification period of May to November, the very small (<18 μm) and small (18–30 μm) mixotrophic species were distributed throughout the water column whereas the >50 μm mixotrophic species were found only above the DCM. In contrast, during the mixing period of December to May, mixotrophic ciliates were very few and were dominated by small and medium-sized species. It seems that mixotrophic and heterotrophic ciliates, on one hand, and the four size classes, on the other, are very distinct groups characterized by different distributions both vertically and seasonally. This may have important consequences for the structure and function of the microbial food web of which they are part, as well as for the carbon flow to the higher trophic levels of this oligotrophic environment in which ciliates are the main grazers.
The annual/temporal and vertical dynamics of the microbial food web (MFW) was studied in a coastal station of the oligotrophic Eastern Mediterranean Sea. The present study analyzed the changes of all components of the MFW with a specific focus on the relationships between different size classes of heterotrophic and mixotrophic ciliates with their potential prey. The MFW was dominated by heterotrophic picoplankton in all months and depths analyzed, whereas autotrophic nanoplankton took advantage in cold months with higher nutrient availability. On the other hand, mixotrophic microplankton biomass was higher in summer when nutrients and chlorophyll-a were scarce. As part of the mixotrophic biomass, mixotrophic ciliates were correlated with their “potential” prey at the surface and deep chlorophyll maximum. Large mixotrophic ciliates (L. strobila) were more selective in terms of potential prey, showing a correlation with Synechococcus. On the other hand, mixotrophic nanociliates (Strombidium dalum) were correlated differently with different potential prey according to depth, supporting the idea that nanociliates could be more generalists in terms of prey selection. Because the relationships between mixotrophic ciliates and their potential prey are still poorly studied, this work represents the start for further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.