Purpose Fragile X syndrome (FXS), the most prevalent inherited cause of intellectual disability, remains underdiagnosed in the general population. Clinical studies have shown that individuals with FXS have a complex health profile leading to unique clinical needs. However, the full impact of this X-linked disorder on the health of affected individuals is unclear and the prevalence of co-occurring conditions is unknown. Methods We mined the longitudinal electronic health records from more than one million individuals to investigate the health characteristics of patients who have been clinically diagnosed with FXS. Additionally, using machine-learning approaches, we created predictive models to identify individuals with FXS in the general population. Results Our discovery-oriented approach identified the associations of FXS with a wide range of medical conditions including circulatory, endocrine, digestive, and genitourinary, in addition to mental and neurological disorders. We successfully created predictive models to identify cases five years prior to clinical diagnosis of FXS without relying on any genetic or familial data. Conclusion Although FXS is often thought of primarily as a neurological disorder, it is in fact a multisystem syndrome involving many co-occurring conditions, some primary and some secondary, and they are associated with a considerable burden on patients and their families.
Machine learning is continually being applied to a growing set of fields, including the social sciences, business, and medicine. Some fields present problems that are not easily addressed using standard machine learning approaches and, in particular, there is growing interest in differential prediction. In this type of task we are interested in producing a classifier that specifically characterizes a subgroup of interest by maximizing the difference in predictive performance for some outcome between subgroups in a population. We discuss adapting maximum margin classifiers for differential prediction. We first introduce multiple approaches that do not affect the key properties of maximum margin classifiers, but which also do not directly attempt to optimize a standard measure of differential prediction. We next propose a model that directly optimizes a standard measure in this field, the uplift measure. We evaluate our models on real data from two medical applications and show excellent results.
The impact of the FMR1 premutation on human health is the subject of considerable controversy. A fundamental unanswered question is whether carrying the premutation allele is directly correlated with clinical phenotypes. A challenging problem in past genotype-phenotype studies of the FMR1 premutation is ascertainment bias, which could lead to invalid research conclusions and negatively affect clinical practice. Here, we created the first population-based FMR1-informed biobank to find the pattern of health characteristics in premutation carriers. Our extensive phenotyping shows that premutation carriers experience a clinical profile that is significantly different from controls and is evident throughout adulthood. Comprehensive understanding of the clinical risk associated with this genetic variant is critical for premutation carriers, their families, and clinicians and has important implications for public health.
Many important scientific discoveries require lengthy experimental processes of trial and error and could benefit from intelligent prioritization based on deep domain understanding. While exponential growth in the scientific literature makes it difficult to keep current in even a single domain, that same rapid growth in literature also presents an opportunity for automated extraction of knowledge via text mining. We have developed a web application implementation of the KinderMiner algorithm for proposing ranked associations between a list of target terms and a key phrase. Any key phrase and target term list can be used for biomedical inquiry. We built the web application around a text index derived from PubMed. It is the first publicly available implementation of the algorithm, is fast and easy to use, and includes an interactive analysis tool. The KinderMiner web application is a public resource offering scientists a cohesive summary of what is currently known about a particular topic within the literature, and helping them to prioritize experiments around that topic. It performs comparably or better to similar state-of-the-art text mining tools, is more flexible, and can be applied to any biomedical topic of interest. It is also continually improving with quarterly updates to the underlying text index and through response to suggestions from the community. The web application is available at https://www.kinderminer.org.
We introduce Score As You Lift (SAYL), a novel Statistical Relational Learning (SRL) algorithm, and apply it to an important task in the diagnosis of breast cancer. SAYL combines SRL with the marketing concept of uplift modeling, uses the area under the uplift curve to direct clause construction and final theory evaluation, integrates rule learning and probability assignment, and conditions the addition of each new theory rule to existing ones. Breast cancer, the most common type of cancer among women, is categorized into two subtypes: an earlier in situ stage where cancer cells are still confined, and a subsequent invasive stage. Currently older women with in situ cancer are treated to prevent cancer progression, regardless of the fact that treatment may generate undesirable side-effects, and the woman may die of other causes. Younger women tend to have more aggressive cancers, while older women tend to have more indolent tumors. Therefore older women whose in situ tumors show significant dissimilarity with in situ cancer in younger women are less likely to progress, and can thus be considered for watchful waiting. Motivated by this important problem, this work makes two main contributions. First, we present the first multi-relational uplift modeling system, and introduce, implement and evaluate a novel method to guide search in an SRL framework. Second, we compare our algorithm to previous approaches, and demonstrate that the system can indeed obtain differential rules of interest to an expert on real data, while significantly improving the data uplift.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.