Vancomycin, metronidazole, and the bacteriocin lacticin 3147 are active against a wide range of bacterial species, including Clostridium difficile. We demonstrate that, in a human distal colon model, the addition of each of the three antimicrobials resulted in a significant decrease in numbers of C. difficile. However, their therapeutic use in the gastrointestinal tract may be compromised by their broad spectrum of activity, which would be expected to significantly impact on other members of the human gut microbiota. We used highthroughput pyrosequencing to compare the effect of each antimicrobial on the composition of the microbiota. All three treatments resulted in a decrease in the proportion of sequences assigned to the phyla Firmicutes and Bacteroidetes, with a corresponding increase in those assigned to members of the Proteobacteria. One possible means of avoiding such "collateral damage" would involve the application of a narrow-spectrum antimicrobial with specific anti-C. difficile activity. We tested this hypothesis using thuricin CD, a narrowspectrum bacteriocin produced by Bacillus thuringiensis, which is active against C. difficile. The results demonstrated that this bacteriocin was equally effective at killing C. difficile in the distal colon model but had no significant impact on the composition of the microbiota. This offers the possibility of developing a targeted approach to eliminating C. difficile in the colon, without collateral damage.gut microbiota | pyrosequencing | bacteriocin | antibiotic | thuricin
Feed efficiency (FE) is critical in pig production for both economic and environmental reasons. As the intestinal microbiota plays an important role in energy harvest, it is likely to influence FE. Therefore, our aim was to characterize the intestinal microbiota of pigs ranked as low, medium, and high residual feed intake ([RFI] a metric for FE), where genetic, nutritional, and management effects were minimized, to explore a possible link between the intestinal microbiota and FE. Eightyone pigs were ranked according to RFI between weaning and day 126 postweaning, and 32 were selected as the extremes in RFI (12 low, 10 medium, and 10 high). Intestinal microbiota diversity, composition, and predicted functionality were assessed by 16S rRNA gene sequencing. Although no differences in microbial diversity were found, some RFI-associated compositional differences were revealed, principally among members of Firmicutes, predominantly in feces at slaughter (albeit mainly for low-abundance taxa). In particular, microbes associated with a leaner and healthier host (e.g., Christensenellaceae, Oscillibacter, and Cellulosilyticum) were enriched in low RFI (more feed-efficient) pigs. Differences were also observed in the ileum of low RFI pigs; most notably, Nocardiaceae (Rhodococcus) were less abundant. Predictive functional analysis suggested improved metabolic capabilities in these animals, especially within the ileal microbiota. Higher ileal isobutyric acid concentrations were also found in low RFI pigs. Overall, the differences observed within the intestinal microbiota of low RFI pigs compared with that of their high RFI counterparts, albeit relatively subtle, suggest a possible link between the intestinal microbiota and FE in pigs.IMPORTANCE This study is one of the first to show that differences in intestinal microbiota composition, albeit subtle, may partly explain improved feed efficiency (FE) in low residual feed intake (RFI) pigs. One of the main findings is that, although microbial diversity did not differ among animals of varying FE, specific intestinal microbes could potentially be linked with porcine FE. However, as the factors impacting FE are still not fully understood, intestinal microbiota composition may not be a major factor determining differences in FE. Nonetheless, this work has provided a potential set of microbial biomarkers for FE in pigs. Although culturability could be a limiting factor and intervention studies are required, these taxa could potentially be targeted in the future to manipulate the intestinal microbiome so as to improve
Methane is generated in the foregut of all ruminant animals by the microorganisms present. Dietary manipulation is regarded as the most effective and most convenient way to reduce methane emissions (and in turn energy loss in the animal) and increase nitrogen utilization efficiency. This review examines the impact of diet on bovine rumen function and outlines what is known about the rumen microbiome. Our understanding of this area has increased significantly in recent years due to the application of omics technologies to determine microbial composition and functionality patterns in the rumen. This information can be combined with data on nutrition, rumen physiology, nitrogen excretion and/or methane emission to provide comprehensive insights into the relationship between rumen microbial activity, nitrogen utilisation efficiency and methane emission, with an ultimate view to the development of new and improved intervention strategies.
The atypical antipsychotic olanzapine is often associated with serious metabolic side effects including weight gain and increased visceral fat. These adverse events are a considerable clinical problem and the mechanisms underlying them are multifactorial and poorly understood. Growing evidence suggests that the gut microbiota has a key role in energy regulation and disease states such as obesity. Moreover, we recently showed that chronic olanzapine altered the composition of the gut microbiome in the rat. It is thus possible that treatments that alter gut microbiota composition could ameliorate olanzapine-induced weight gain and associated metabolic syndrome. To this end, we investigated the impact of antibiotic-induced alteration of the gut microbiota on the metabolic effects associated with chronic olanzapine treatment in female rats. Animals received vehicle or olanzapine (2 mg kg−1 per day) for 21 days, intraperitoneal injection, two times daily. Animals were also coadministered vehicle or an antibiotic cocktail consisting of neomycin (250 mg kg−1 per day), metronidazole (50 mg kg−1 per day) and polymyxin B (9 mg kg−1 per day) by oral gavage, daily, beginning 5 days before olanzapine treatment. The antibiotic cocktail drastically altered the microbiota of olanzapine-treated rats, and olanzapine alone was also associated with an altered microbiota. Coadministration of the antibiotic cocktail in olanzapine-treated rats attenuated: body weight gain, uterine fat deposition, macrophage infiltration of adipose tissue, plasma free fatty acid levels, all of which were increased by olanzapine alone. These results suggest that the gut microbiome has a role in the cycle of metabolic dysfunction associated with olanzapine, and could represent a novel therapeutic target for preventing antipsychotic-induced metabolic disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.