The Australian sugar industry is moving away from the practice of burning the crop before harvest to a system of green cane trash blanketing (GCTB). Since the residues that would have been lost in the fire are returned to the soil, nutrients and organic matter may be accumulating under trash blanketing. There is a need to know if this is the case, to better manage fertiliser inputs and maintain soil fertility. The objective of this work was to determine whether conversion from a burning to a GCTB trash management system is likely to affect soil fertility in terms of C and N. Indicators of short- and long-term soil C and N cycling were measured in 5 field experiments in contrasting climatic conditions. The effects of GCTB varied among experiments. Experiments that had been running for 1–2 years (Harwood) showed no significant trash management effects. In experiments that had been running for 3–6 years (Mackay and Tully), soil organic C and total N were up to 21% greater under trash blanketing than under burning, to 0.10 or 0.25 m depth (most of this effect being in the top 50 mm). Soil microbial activity (CO2 production) and soil microbial biomass also increased under GCTB, presumably as a consequence of the improved C availability. Most of the trash C was respired by the microbial biomass and lost from the system as CO2. The stimulation of microbial activity in these relatively short-term GCTB systems was not accompanied by increased net mineralisation of soil N, probably because of the greatly increased net immobilisation of N. It was calculated that, with standard fertiliser applications, the entire trash blanket could be decomposed without compromising the supply of N to the crop. Calculations of possible long-term effects of converting from a burnt to a GCTB production system suggested that, at the sites studied, soil organic C could increase by 8–15%, total soil N could increase by 9–24%, and inorganic soil N could increase by 37 kg/ha.year, and that it would take 20–30 years for the soils to approach this new equilibrium. The results suggest that fertiliser N application should not be reduced in the first 6 years after adoption of GCTB, but small reductions may be possible in the longer term (>15 years).
Nutrients exported from grazing systems contribute to eutrophication of surface waters. In this study the contributions of soil, pasture-plants, and dung to P exports in overland flow were compared using simulated rainfall. The treatments were (i) grazed pasture-plants (isolated from soil by application of petrolatum to the soil surface), (ii) grazed pasture-plants and supporting soil, (iii) grazed pasture-plants and soil and treading, and (iv) grazed pasture-plants and soil and treading and dung. In general, dissolved reactive P (DRP) accounted for the majority of the P exported and P losses decreased in the order: treading and dung treatment>treading>pasture-plants and soil>pasture-plants. Very little dissolved organic P was lost in overland flow and the effects of treading diminished with time. Over a normal grazing cycle (30 d), the portion of P lost from pasture-plants was approximately half that lost from pasture-plants and soil, one-third that lost from treaded pasture-plants and soil, and one-quarter that lost from treaded pasture-plants, soil, and dung. The DRP in the pasture-plants treatment was approximately half that in the pasture-plants and soil treatment and suggests that a significant portion of the P exported from these systems is derived directly from pasture-plants. Due to higher proportions of particulate P (PP) in the treaded and dung treatments, DRP accounted for less of total P than in the pasture-plants and pasture-plants and soil treatments. Lower infiltration capacities probably caused by mechanical disaggregation at the soil surface are consistent with the higher proportions of PP in the treading treatments. These results were used to estimate P exports from a field trial site in Southland, New Zealand. The results suggested that P export attributable to fertilizer, dung, pasture-plants, and soil components were approximately 10, 30, 20, and 40%, respectively. These results suggest that since 90% of the P exports are derived from the soil-plant system and dung returns, managements to lessen P exports should continue to focus on maintaining soil P within the optimal range for pasture-plant production and maintaining soil surface properties that maximize infiltration and minimize overland flow.
Sugarcane in Australia is increasingly grown under the green cane trash blanket system where harvest residues (trash) are retained on the soil surface instead of being burnt. This is considered a more sustainable system, but relatively little is known about its effects on soil carbon (C) and nitrogen (N). As part of a study to understand the effects of trash retention on soil C and N dynamics, we measured the composition and decomposition of sugarcane trash in terms of dry matter (DM), C, and N in 5 field experiments in contrasting climatic conditions in Queensland and New South Wales. The trash from newly harvested sugarcane contained large quantities of DM (7–12 t/ha) and C (3–5 t/ha), which could be estimated from cane yield, and significant quantities of N (28–54 kg/ha), which could not be predicted from cane yield. Trash quality was low (C : N ratio >70) and it took a year for most of the trash to decompose. Cumulative thermal time was the variable most closely associated with cumulative DM and C decomposition. Variation in the rate of trash DM and C decomposition between sampling dates was partially related to temperature and rainfall at 2 of the 3 sites, but was considered to be influenced by other factors (such as soil, trash, and management) as much as by climate. There were 2 phases of decomposition: an early phase when C : N ratios were high and variable and net N loss or gain was not related to C loss; and a late phase when C : N ratios were much lower and similar across experiments and net N loss was related to C loss. The rate of N loss from trash during the first 12 months was slow (1–5 kg/month), which would have been of little immediate significance for plant growth. The potential value of trash for soil N supply lies in cumulative effects over the medium–long term.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.