De novo mutations (DNMs) in protein-coding genes are a well-established cause of developmental disorders (DD). However, known DD-associated genes only account for a minority of the observed excess of such DNMs. To identify novel DD-associated genes, we integrated healthcare and research exome sequences on 31,058 DD parent-offspring trios, and developed a simulation-based statistical test to identify gene-specific enrichments of DNMs. We identified 285 significantly DD-associated genes, including 28 not previously robustly associated with DDs. Despite detecting more DD-associated genes than in any previous study, much of the excess of DNMs of protein-coding genes remains unaccounted for. Modelling suggests that over 1,000 novel DD-associated genes await discovery, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of dominant DDs.
This review is published as a Cochrane Review in the Cochrane Database of Systematic Reviews 2017, 3. Cochrane Reviews are regularly updated as new evidence emerges and in response to comments and criticisms, and the Cochrane Database of Systematic Reviews should be consulted for the most recent version of the Review.
We recently identified mutations of ARX in nine genotypic males with X-linked lissencephaly with abnormal genitalia (XLAG), and in several female relatives with isolated agenesis of the corpus callosum (ACC). We now report 13 novel and two recurrent mutations of ARX, and one nucleotide change of uncertain significance in 20 genotypic males from 16 families. Most had XLAG, but two had hydranencephaly and abnormal genitalia, and three males from one family had Proud syndrome or ACC with abnormal genitalia. We obtained detailed clinical information on all 29 affected males, including the nine previously reported subjects. Premature termination mutations consisting of large deletions, frameshifts, nonsense mutations, and splice site mutations in exons 1 to 4 caused XLAG or hydranencephaly with abnormal genitalia. Nonconservative missense mutations within the homeobox caused less severe XLAG, while conservative substitution in the homeodomain caused Proud syndrome. A nonconservative missense mutation near the C-terminal aristaless domain caused unusually severe XLAG with microcephaly and mild cerebellar hypoplasia. In addition, several less severe phenotypes without malformations have been reported, including mental retardation with cryptogenic infantile spasms (West syndrome), other seizure types, dystonia or autism, and nonsyndromic mental retardation. The ARX mutations associated with these phenotypes have included polyalanine expansions or duplications, missense mutations, and one deletion of exon 5. Together, the group of phenotypes associated with ARX mutations demonstrates remarkable pleiotropy, but also comprises a nearly continuous series of developmental disorders that begins with hydranencephaly, lissencephaly, and agenesis of the corpus callosum, and ends with a series of overlapping syndromes with apparently normal brain structure.
We systematically reviewed the literature to assess the safety and diagnostic performance of renal tumour biopsy (RTB). The results suggest that RTB has good accuracy in diagnosing renal cancer and its subtypes, and it appears to be safe. However, the quality of evidence was moderate, and better quality studies are required to provide a more definitive answer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.