The extensive somatic diversification of immune receptors is a hallmark of higher vertebrates. However, whether molecular diversity contributes to immune protection in invertebrates is unknown. We present evidence that Drosophila immune-competent cells have the potential to express more than 18,000 isoforms of the immunoglobulin (Ig)-superfamily receptor Down syndrome cell adhesion molecule (Dscam). Secreted protein isoforms of Dscam were detected in the hemolymph, and hemocyte-specific loss of Dscam impaired the efficiency of phagocytic uptake of bacteria, possibly due to reduced bacterial binding. Importantly, the molecular diversity of Dscam transcripts generated through a mechanism of alternative splicing is highly conserved across major insect orders, suggesting an unsuspected molecular complexity of the innate immune system of insects.
Growth factors synthesized and released by target tissues promote survival and differentiation of innervating neurons. This retrograde signal begins when growth factors bind receptors at nerve terminals. Activated receptors are then endocytosed and transported through the axon to the cell body. Here we show that the mitogen-activated protein kinase (MAPK) signaling pathways used by neurotrophins during retrograde signaling differ from those used following direct stimulation of the cell soma. During retrograde signaling, endocytosed neurotrophin receptors (Trks) activate the extracellular signal-related protein kinase 5 (Erk5) pathway, leading to nuclear translocation of Erk5, phosphorylation of CREB, and enhanced neuronal survival. In contrast, Erk1/2, which mediates nuclear responses following direct cell body stimulation, does not transmit a retrograde signal. Thus, the Erk5 pathway has a unique function in retrograde signaling. Differential activation of distinct MAPK pathways may enable an individual growth factor to relay information that specifies the location and the nature of stimulation.
Alternative splicing of Dscam generates an enormous molecular diversity with maximally 38,016 different receptors. Whether this large diversity is required in vivo is currently unclear. We examined the role of Dscam in neuron-target recognition of single mechanosensory neurons, which connect with different target cells through multiple axonal branches. Analysis of Dscam null neurons demonstrated an essential role of Dscam for growth and directed extension of axon branches. Expression of randomly chosen single isoforms could not rescue connectivity but did restore basic axonal extension and rudimentary branching. Moreover, two Dscam alleles were generated that each reduced the maximally possible Dscam diversity to 22,176 isoforms. Reduction of Dscam diversity resulted in specific connectivity defects of mechanosensory neurons. Furthermore, the observed allele-specific phenotypes suggest functional differences among isoforms. Our findings provide evidence that a very large number of structurally unique receptor isoforms is required to ensure fidelity and precision of neuronal connectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.