The extensive somatic diversification of immune receptors is a hallmark of higher vertebrates. However, whether molecular diversity contributes to immune protection in invertebrates is unknown. We present evidence that Drosophila immune-competent cells have the potential to express more than 18,000 isoforms of the immunoglobulin (Ig)-superfamily receptor Down syndrome cell adhesion molecule (Dscam). Secreted protein isoforms of Dscam were detected in the hemolymph, and hemocyte-specific loss of Dscam impaired the efficiency of phagocytic uptake of bacteria, possibly due to reduced bacterial binding. Importantly, the molecular diversity of Dscam transcripts generated through a mechanism of alternative splicing is highly conserved across major insect orders, suggesting an unsuspected molecular complexity of the innate immune system of insects.
The availability of peptide and protein components that fold to defined structures with tailored stabilities would facilitate rational protein engineering and synthetic biology. We have begun to generate a toolkit of such components based on de novo designed coiled-coil peptides that mediate protein-protein interactions. Here, we present a set of coiled-coil heterodimers to add to the toolkit. The lengths of the coiled-coil regions are 21, 24, or 28 residues, which deliver dissociation constants in the micromolar to sub-nanomolar range. In addition, comparison of two related series of peptides highlights the need for including polar residues within the hydrophobic interfaces, both to specify the dimer state over alternatives and to fine-tune the dissociation constants.
Summary
Extracellular signals regulate protein translation in many cell functions. A key advantage of control at the translational level is the opportunity to regulate protein synthesis within specific cellular subregions. However, little is known about mechanisms that may link extracellular cues to translation with spatial precision. Here we show that a transmembrane receptor, DCC, forms a binding complex containing multiple translation components, including eukaryotic initiation factors, ribosomal large and small subunits, and monosomes. In neuronal axons and dendrites DCC colocalizes in particles with translation machinery, and newly synthesized protein. The extracellular ligand netrin promoted DCC-mediated translation and disassociation of translation components. The functional and physical association of a cell surface receptor with the translation machinery leads to a generalizable model for localization and extracellular regulation of protein synthesis, based on a transmembrane translation regulation complex.
The production of ribosomes constitutes a major biosynthetic task for cells. Eukaryotic small and large ribosomal subunits are assembled in the nucleolus and independently exported to the cytoplasm. Most nuclear export pathways require RanGTP-binding export receptors. We analyzed the role of CRM1, the export receptor for leucine-rich nuclear export signals (NES), in the biogenesis of ribosomal subunits in vertebrate cells. Inhibition of the CRM1 export pathway led to a defect in nuclear export of both 40S and 60S subunits in HeLa cells. Moreover, the export of newly made ribosomal subunits in Xenopus oocytes was efficiently and specifically competed by BSA-NES conjugates. The CRM1 dependence of 60S subunit export suggested a conserved function for NMD3, a factor proposed to be a 60S subunit export adaptor in yeast. Indeed, we observed that nuclear export of human NMD3(hNMD3) is sensitive to leptomycin B (LMB), which inactivates CRM1. It had,however, not yet been demonstrated that Nmd3 can interact with CRM1. Using purified recombinant proteins we have shown here that hNMD3 binds to CRM1 directly, in a RanGTP-dependent manner, by way of a C-terminal NES sequence. Our results suggest that the functions of CRM1 and NMD3 in ribosomal subunit export are conserved from yeast to higher eukaryotes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.