The high cost of testing certain analog, mixed-signal, and RF circuits has driven in the recent years the development of alternative low-cost tests to replace the most costly or even all standard specification tests. However, there is a lack of solutions for evaluating the parametric test error, that is, the test error for circuits with process variations, resulting from this replacement. For this reason, test engineers are often reluctant to adopt alternative tests since it is not guaranteed that test cost reduction is not achieved at the expense of sacrificing test quality. In this paper, we present a technique to estimate the parametric test error fast and reliably with parts per million accuracy. The technique is based on extreme value theory and statistical blockade. Relying on a small number of targeted simulations, it is capable of providing accurate estimates of parametric test error in the general scenario where a set of alternative tests replaces all or a subset of standard specification tests.
We review recent compact modeling solutions for Organic and Amorphous Oxide TFTs (OTFTs and AOS TFTs, respectively), which were developed, under the framework of the EU-funded project DOMINO, to address issues specifically connected to the physics of these devices. In particular, using different approaches, analytical equations were formulated to model the Density of States (DOS), different transport mechanisms, trapping/de-trapping, drain current, stress, capacitances, frequency dispersion and noise. The final TFT models were, after implementation in Verilog-A, validated by means of the design and simulation of test circuits.
In this paper, Low Frequency Noise (LFN) characterization of SP500 polymer-based Organic Thin Film Transistors with a nonfluorinated dielectric material is presented. The work aimed at identifying the mechanism of 1/f noise as well as inspecting the quality of the gate dielectric interface. Analysis of the LFN experimental data reveals that the 1/f noise power spectral density (PSD) follows 1/f γ frequency dependence over 1 Hz–10 kHz range. The normalized current noise PSD is found to vary similar to the squared-transconductance drain current ratio with respect to drain current, and is inversely related to the gate-area. Furthermore, the high carrier mobility (on the order of 2–3 cm2/Vs) obtained in these devices indicates that low density of traps exists in the semiconducting organic thin film. Such results ascribed the origin of 1/f noise to the dynamic exchange of charge carriers between the gate-dielectric traps and the channel. In addition, Nst values extracted from the 1/f noise experimental data reflect the enhanced quality of the gate dielectric and the interface it forms with the channel material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.