Over the past decades, video games have become increasingly popular and complex. Virtual worlds have gone a long way since the first arcades and so have the artificial intelligence (AI) techniques used to control agents in these growing environments. Tasks such as world exploration, constrained pathfinding or team tactics and coordination just to name a few are now default requirements for contemporary video games. However, despite its recent advances, video game AI still lacks the ability to learn. In this paper, we attempt to break the barrier between video game AI and machine learning and propose a generic method allowing real-time strategy (RTS) agents to learn production strategies from a set of recorded games using supervised learning. We test this imitative learning approach on the popular RTS title StarCraft II R and successfully teach a Terran agent facing a Protoss opponent new production strategies.
With modern video games frequently featuring sophisticated and realistic environments, the need for smart and comprehensive agents that understand the various aspects of complex environments is pressing. Since video game AI is often specifically designed for each game, video game AI tools currently focus on allowing video game developers to quickly and efficiently create specific AI. One issue with this approach is that it does not efficiently exploit the numerous similarities that exist between video games not only of the same genre, but of different genres too, resulting in a difficulty to handle the many aspects of a complex environment independently for each video game. Inspired by the human ability to detect analogies between games and apply similar behavior on a conceptual level, this paper suggests an approach based on the use of a unified conceptual framework to enable the development of conceptual AI which relies on conceptual views and actions to define basic yet reasonable and robust behavior. The approach is illustrated using two video games,RavenandStarCraft: Brood War.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.