A comprehensive raindrop collision outcome regime diagram that delineates the physical conditions associated with the outcome regimes (i.e., bounce, coalescence, and different breakup types) of binary raindrop collisions is proposed. The proposed diagram builds on a theoretical regime diagram defined in the phase space of collision Weber numbers We and the drop diameter ratio p by including critical angle of impact considerations. In this study, the theoretical regime diagram is first evaluated against a comprehensive dataset for drop collision experiments representative of raindrop collisions in nature. Subsequently, the theoretical regime diagram is modified to explicitly describe the dominant regimes of raindrop interactions in (We, p) by delineating the physical conditions necessary for the occurrence of distinct types of collision-induced breakup (neck/filament, sheet, disk, and crown breakups) based on critical angle of impact consideration. Crown breakup is a subtype of disk breakup for lower collision kinetic energy that presents distinctive morphology. Finally, the experimental results are analyzed in the context of the comprehensive collision regime diagram, and conditional probabilities that can be used in the parameterization of breakup kernels in stochastic models of raindrop dynamics are provided.
Raindrop collision and breakup is a stochastic process that affects the evolution of drop size distributions (DSDs) in precipitating clouds. Low and List have remained the obligatory reference on this matter for almost three decades. Based on a limited number of drop sizes (10), Low and List proposed generalized parameterizations of collisional breakup across the raindrop spectra that are standard building blocks for numerical models of rainfall microphysics. Here, recent laboratory experiments of drop collision at NASA’s Wallops Island Facility (NWIF) using updated high-speed imaging technology with the objective of assessing the generality of Low and List are reported. The experimental fragment size distributions (FSDs) for the collision of selected drop pairs were evaluated against explicit simulations using a dynamical microphysics model (Prat and Barros, with parameterizations based on Low and List updated by McFarquhar). One-to-one comparison of the FSDs shows similar distributions; however, the model was found to underestimate the fragment numbers observed in the smallest diameter range (e.g., D < 0.2 mm), and to overestimate the number of fragments produced when small drops (diameter DS ≥ 1mm) and large drops (diameter DL ≥ 3mm) collide. This effect is particularly large for fragments in the 0.5–1.0-mm range, and more so for filament breakup (the most frequent type of breakup observed in laboratory conditions), reflecting up to 30% uncertainty in the left-hand side of the FSD (i.e., the submillimeter range). For coalescence, the NWIF experiments confirmed the drop collision energy cutoff (ET) estimated by Low and List (i.e., ET > 5.0 μJ). Finally, the digital imagery of the laboratory experiments was analyzed to determine the characteristic time necessary to reach stability in relevant statistical properties. The results indicate that the temporal separation between particle (i.e., single hydrometeor) and population behavior, that is, the characteristic time scale to reach homogeneity in the NWIF raindrop populations, is 160 ms, which provides a lower bound to the governing time scale in population-based microphysical models.
Mesler entrainment is the formation of large numbers of small bubbles which occurs when a drop strikes a liquid reservoir at a relatively low velocity. Existing studies of Mesler entrainment have focused almost exclusively on water as the working fluid in a nominally clean state, where even very small levels of contamination can cause significant changes in surface tension that affect the repeatability of the results. Herein water combined with the soluble surfactant Triton X-100 is used as the working fluid in an attempt to stabilize the state of the water surface. Despite this approach, nominally identical drops did not always result in the same bubble formation event. Accordingly, Mesler entrainment was quantified by its frequency of occurrence for drops having the same nominal diameter and impact velocity. This frequency of occurrence was found to be well correlated to both the Weber number and the shape of the drop on impact. V
Periodic oscillations of raindrops falling at terminal velocity in natural rain are visualized for the first time by high-speed imaging. These images show the existence of an oscillation mode with the same frequency as the fundamental harmonic, but with shape different than that predicted by linear theory. These oscillations cause a lateral drift with a speed of approximately 20%-30% of the drop terminal velocity and without a preferred direction. These experimental observations serve as an insightful illustration of the potential benefit of applying high-speed imaging technology to investigate the dynamical microstructure of rainfall at the raindrop scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.