Mesler entrainment is the formation of large numbers of small bubbles which occurs when a drop strikes a liquid reservoir at a relatively low velocity. Existing studies of Mesler entrainment have focused almost exclusively on water as the working fluid in a nominally clean state, where even very small levels of contamination can cause significant changes in surface tension that affect the repeatability of the results. Herein water combined with the soluble surfactant Triton X-100 is used as the working fluid in an attempt to stabilize the state of the water surface. Despite this approach, nominally identical drops did not always result in the same bubble formation event. Accordingly, Mesler entrainment was quantified by its frequency of occurrence for drops having the same nominal diameter and impact velocity. This frequency of occurrence was found to be well correlated to both the Weber number and the shape of the drop on impact. V
An important factor identified for the efficiency of falling particle concentrating solar applications is the falling particle curtain opacity. Low curtain opacity results in increased radiative losses. Candidate multi-stage configurations that can increase particle-curtain opacity were simulated for the existing 1 MWth falling particle on-sun receiver at Sandia’s NSTTF. In the candidate configurations, falling particles were collected periodically in sloped troughs spanning the width of the receiver. A small lip at the front of each trough causes particles to accumulate, allowing subsequent particles to spill over. Particle surface boundary conditions were represented with an empirically based model created to approximate particle behavior observed in testing. Curtain opacity increased using a multi-stage approach and decreases in radiative losses were outweighed by decreases in advective losses which were the dominant loss mechanism. The ability to alter the flow of air within the receiver using multi-stage release resulted in the greatest efficiency gains by reducing advective losses. Additionally, multi-stage release substantially decreased back wall temperatures within receiver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.