<p class="JGI-AbstractIsi">Penelitian ini akan membandingkan dua algoritma klasifikasi yaitu K-Nearest Neighbour dan Naive Bayes Classifier pada data-data aktivitas status gunung berapi yang ada di Indonesia. Sedangkan untuk validasi data menggunakan k-fold cross validation. Dalam penentuan status gunung berapi pusat vulkanologi dan mitigasi bencana geologi melakukan dengan dua hal yaitu pengamatan visual dan faktor kegempaan. Pada penelitian ini dalam melakukan klasifikasi aktivitas gunung berapi menggunakan faktor kegempaan. Ada 5 kriteria yang digunakan dalam melakukan klasifikasi yaitu empat faktor kegempaan diantaranya gempa vulkanik dangkal, gempa tektonik jauh, gempa vulkanik dalam, gempa hembusan dan ditambah satu kriteria yaitu status sebelumnya. Ada 3 status yang di yang diklasifikasi yaitu normal, waspada dan siaga. Hasil penelitian yang dibagi kedalam 3 fold disetiap metode klasifikasi didapat perbandingan akurasi sistem rata-rata tertinggi pada k-nn 63,68 % dengan standar deviasi 7,47 %. Sedangkan dengan menggunakan naive bayes didapat rata-rata akurasi sebesar 79,71 % dengan standar deviasi 3,55 %. Selain itu, penggunaan naive bayes jaraknya akurasi lebih dekat dibandingan dengan k-nn.</p><p class="JGI-AbstractIsi"> </p><p class="JGI-AbstractIsi"><em><strong>Abstract</strong></em></p><p><em>This </em><em>research</em><em> will compare two classification algorithms that are K-Nearest Neighbors and Naive Bayes Classifier on data of volcanic status activity in Indonesia. While for data validation use k-fold cross validation. In determining the status of volcanology center volcanology and geological disaster mitigation to do with two things: visual observation and seismic factors. In this research in doing the classification of volcanic activity using earthquake factor. There are 5 criteria used in the classification of four seismic factors such as shallow volcanic earthquakes, distant tectonic earthquakes, volcanic earthquakes in the earthquake, blast and plus one criterion that is the previous status. There are 3 statuses in which are classified ie normal, alert and alert. The results of the study are divided into 3 fold in each classification method obtained comparison of the highest average system accuracy at 63.68% </em><em>k</em><em>-nn with a standard deviation of 7.47%. While using naive bayes obtained an average accuracy of 79.</em><em>7</em><em>1% with a standard deviation of 3.55%. In addition, the use of naive bayes is closer to the accuracy of </em><em>k-nn</em><em>.</em></p>
Tomat memiliki sifat yang mudah rusak, penanganan yang tidak tepat pada buah tomat mengakibatkan penurunan mutu yang selanjutnya mempengaruhi nilai gizi dan nilai ekonomisnya. Pada umumnya, untuk mengukur kematangan masih dikerjakan secara manual, kelemahan dari metode tersebut adalah tingkat akurasi yang tidak konsisten. Pemanfaatan citra sangat penting untuk mengetahui kematangan buah tomat dengan memanfaatkan citra digital. Dengan adanya citra digital maka untuk menentukan kematangan buah tomat berdasarkan warnanya bisa dilakukan secara computing (berbasis teknologi), yaitu dengan menerapkan pengolahan citra menggunakan metode transformasi ruang warna HIS (Hue, Saturation, Intensity). Model warna HIS (Hue, Saturation, Intensity) memisahkan komponen intensitas dari informasi warna yang dibawa (hue dan saturation) dalam warna citra. Hasil dari klasifikasi kematangan dapat dilihat pada masing-masing pengujian dengan nilai presentase 94,28571429% untuk kategori buah tomat matang, 94,28571429% untuk kategori buah tomat setengah matang dan 94,28571429% untuk kategori buah tomat mentah. Nilai presentase untuk pengujian keseluruhan data mempunyai presentase yang sangat tinggi dan berpengaruh dalam mendeteksi kematangan buah yaitu mencapai presentase sebesar 94,28571429%. Maka dapat disimpulkan, bahwa pendeteksian kematangan buah tomat dapat dilakukan dengan menerapkan metode transformasi ruang warna HIS.
In the provision of social assistance PKH (family hope program) in the Social Service Office of the City of Ternate is still not optimal, because at the time of the selection of recipients of assistance there was no supporting system so that during the selection process still using estimates and the absence of calculations during the selection of beneficiaries. So that few or many people sometimes protest because people who are supposed to get help but they don't get the assistance, and vice versa. This study aims to make a decision support system in the provision of social assistance for family planning programs using the Analytic Hierarchy Process method. The criteria used are 7 criteria, namely Disability, Elderly, Pregnant / postpartum, Children under 6 years of age, Elementary School Children, Middle School and High School Children. The Analytic Hierarchy Process method is a method of settlement using a calculation of pairwise comparison matrices, where each criterion is weighted and a pairwise comparison matrix is calculated. The results of this study are in the form of a decision support system application for PKH assistance in the city of Ternate based on the web which can provide recommendations to the Social Service Office of the City of Ternate as a consideration for decision making in PKH assistance.
<p class="Abstrak">Penggunaan internet dimasyarakat global terus tumbuh, tak hanya terjadi pada masyarakat dewasa melainkan juga pada anak-anak. Internet tidak hanya berdampak pada hal positif melainkan juga pada hal negatif. Di Ternate penggunaan internet terus tumbuh hal ini karena semakin mudah dalam mengakses internet. Namun laporan secara ilmiah mengenai penggunaan internet di Kota Ternate belum ada. untuk itu, bagaimana mengetahui penggunaan internet dikalangan anak SD di kota Ternate. Penelitian itu bertujuan untuk mencari tahu penggunaan internet di Kota Ternate dengan cara survey secara langsung kepada kalangan anak SD di kota Ternate. Selain itu, data-data dari hasil survey kemudian di <em>cluster</em> dengan menggunakan algoritma <em>k-means clustering</em>. kemudian dilakukan validasi <em>clustering</em> dengan <em>davies bouldin index</em>. Hasil dari penelitian ini dari 933 responden diperoleh 51,45 % siswa SD di kota Ternate aktif di jejaring sosial dengan 53,70% di <em>whatsapp</em>, 40,30% di <em>instagram</em> dan 27,80% di facebook. Untuk aktivitas ketika membuka youtube terdapat 61,60% sering menonton video di youtube dengan 61,60% video karton, komedi 49,80% dan konten edukasi 28,40%. Sedangkan untuk game online, yang aktif dalam bermain game online yaitu 49,41%. Untuk penerapan algoritma clustering k-means pada 32 sekolah SD di Kota Ternate diperoleh cluster terbaik saat pembagian 4 cluster, hal ini berdasarkan nilai davies bouldin index yang diperoleh sebesar 0,773 lebih kecil dibandingkan dengan pembagian cluster lainnya.</p><p class="Abstrak"> </p><p class="Abstrak"><em><strong>Abstract</strong></em></p><p class="Abstrak"><em>The use of the internet in the global community continues to grow, not only in adults but also in children. The internet does not only have positive effects but also negative things. In Ternate the use of the internet continues to grow because it is easier to access the internet. However, scientific reports regarding the use of the internet in the city of Ternate do not yet exist. for that, how to find out the use of the internet among elementary school children in the city of Ternate. The research aims to find out the use of the internet in the city of Ternate by means of a direct survey among elementary school children in the city of Ternate. In addition, the data from the survey results are then clustered using the k-means clustering algorithm. Then the clustering validation was performed with the bouldin index davies. The results of this study of 933 respondents obtained 51.45% of elementary school students in Ternate were active in social networks with 53.70% on whatsapp, 40.30% on Instagram and 27.80% on Facebook. For activities when opening YouTube there are 61.60% often watching videos on YouTube with 61.60% cardboard videos, comedy 49.80% and educational content 28.40%. As for online games, those active in playing online games are 49.41%. For the application of the k-means clustering algorithm in 32 elementary schools in Ternate, the best cluster was obtained when the division of 4 clusters, this was based on the bouldin index davies value obtained by 0.773 smaller than the other cluster divisions.</em></p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.