BACKGROUND Although circulating tumor cells (CTCs) have been the focus of consideration for a decade, a categorized cell-based diagnostic strategy is unavailable. The personalized management and complementary/analytical-strategy of data require an alphabetic guide. Therefore, we aimed to determine the behavior of CTCs in tumor and blood in order to provide the hypothetical-based agenda in the brain neoplasms. Exploring the protein expression (PE) using a single cell-based method would clarify the heterogeneity and diversity in tumor and blood, which are key events in the evolution in brain tumors. In fact, heterogeneity, diversity, and evolution are required for cancer initiation and progression. AIM To explore CTCs in brain tumors and blood cells and to assay intensity of PE through personalized insight. METHODS The focal population included 14 patients with meningioma, and four patients with metastatic brain tumors (T). PE was assayed by immunofluorescence in tumors cells and CTCs in 18 patients with brain tumors. Ratio test was applied between the T cells and CTCs in tumor tissue and in vascular system. T/CTC ratio-based classification of PE in macrophage chemoattractant chemokine ligand 2 (CCL2), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), CD133, cyclin E, neurofilament marker, cytokeratin 19, and leukocyte common antigen (CD45) were investigated. RESULTS Total analyzed cells ranged between 10794-92283 for tumor cells and between 117-2870 for CTCs. Characteristics of histopathologic and status of an ataxia-telangiectasia mutated polymorphism (D1853N) in 18 patients affected with brain tumors were also provided. The course of evolution and metastatic event relied on the elevated protein expression in CTCs, which could be considered as a prognostic value. Diverse protein expression of the migrated cells into the blood stream and the tumor was indicative of the occurrence of evolution. Besides, the harmonic co-expression between CCL2/EGF and CCL2/VEGF could facilitate the tumor progression including the metastatic event. Expression of these proteins in the migrated vasculature and into the buccal tissue offered a non-invasive follow-up detection in neoplastic disorders. PE-exploration of neurofilament marker/CD133/VEGF of the CTCs in meningioma and cytokeratin 19/CD45/ cyclin E in the patients with metastatic brain tumor would clarify the tumor biology of the brain neoplastic disorders. CONCLUSION The alphabetical base of the evolutionary mechanisms relies on dual-, triple-, and multi-models with diverse intensity of expression. In fact, cross-talk between initiative and the complementary channels defines the evolutionary insight in cancer. A diverse-model of protein expression, including low, medium, and high intensity, is the key requirement for the completed model. The cluster of cells with diverse expression and remarkable co-expression between CCL...
Signal copy number (SCN) and signal intensity (SI) of subtelomeres (ST) are investigated in auxiliary lymph node (ALN) and buccal (BUC) cells by fluorescence in situ hybridization. The extracted total cell of 38256 and 2309 was, respectively, analyzed from the benign ALN- and BUC-cells of an affected breast cancer patient. The Periodic model was based on ST behavior including normal-, down-, and upregulated clones with diverse SCN. The arm-p/q ratio based signature, as a subtelomeric array, reflects discordance and concordance of ST-behavior within individual chromosomes as a concept of “Individualization of Cells” rather than “Global Insight of Cells”. The Periodic charts could be considered as a reliable and refreshable platform through which the cellular evolution could be patterned and characterized. Signature of ST-profile in the BUC and ALN cells and the nature of diverse SCN and SI as quantitative and qualitative value led to modeling the real personalized perspective of cellular evolution. Protein expression of Ki67, Cyclin D1, and Cyclin E was assayed, as a complementary panel. These targets could be applied as the predictive and preventive markers for an early detection at BUC and ALN levels to plan the required managements in the breast cancer patients.
Background: Circulating Tumor Cells (CTCs) are the reliable key for an early detection. The cellbased/classified/personalized diagnostic approaches are unavailable. Therefore, it was aimed to explore the expression behavior of tumor (T) cells in brain, peritoneal cavity (PC) and genomic level to deliver the hypothetical model through the metastatic events. Patients and Methods: The focal assay included protein expression (PE) by immunofluorescence in T-cells of cerebellarmeduloblastoma (CM), PC, and CTCs in a metastatic patient. The CCL2, VEGF, EGF, CD133/Cyclin E/ P21/Neuronal marker (NM), and CD45 were explored. Result: Frequency of T-cells lacking PE and the Ratio of T/CTCs in different sections of CM-tumor cells in brain and the metastatic PC revealed the diverse expression and co-expression of the involved proteins. The poor prognosis is offered upon the value of PE at T/CTCs ratio. High PE and harmonic co-expression played the influential role in the metastatic process and manner of evolution.Conclusions: Single cell-based analysis of expression and co-expression is the directive channel to unmask the heterogeneity through the metastatic process at genomic and somatic levels for providing the metastatic model. Present findings deliver the somatic/genomic ratio-based prognosis for further clinical managements.
Few available data on the genomic-somatic evolution in breast cancer create limitation to provide the appropriate clinical managements. As an example, human subtelomeres (ST) are diverse-prone and variable targets. STs, as hot spots, have positive and negative impacts on the status of health and malady. We showed higher subtelomere signal copy number (SCN) of specific chromosomes in genomics than in auxiliary lymph node (ALN). Dissimilarity of signal intensity (SI) is found for all chromosomes. Significantly higher SI in genomics than in ALN cells were specified as chromosomes 5, 6, 9-12, 16-19 for weak; 1, 5-9, 19, X for medium; and 2, 5, 9, 10, 16, 18 for strong SI. For lacking, and presence of one and two SCNs; p/q ratio reflected differences for all chromosomes; but, 2, 3, 5, 7, 8, 10, 16, 18, 20, and X chromosomes were involved for three SCN. Chromosomes 1, 4, 9, 12, 17-19 lacked three SCN in ALN and lymphocytes. Weak SI ratio was higher in p- than in q-arm in majority of chromosomes. Manner of evolution and diversity in p- and q-arms is expressive of a novel definition as two diverse domains with a personalized insight. These data have been accompanied by periodic charts as ST array profiles which provide specific and individualized pattern in breast neoplasm. Such profiling at genomics level could be considered as a prediction through the patients' life. Moreover, subtelomere territory by interacting with protein expression of Ki67, cyclin D1, and cyclin E; and molecular targets including telomere length at genomics and somatic level provides package of information to bridge cancer cell biology to the cancer clinic as "puzzling paradigm."
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.