Background: Salvia extracts have various biological activities and are rich sources of bioactive metabolites. Objectives: We identified five phytochemicals from S. compressa extract and assessed their biological properties. Methods: The plant's shoots were extracted using dichloromethane, and the constituents were isolated using column chromatography. High-resolution NMR spectroscopy characterized the chemical structures of the compounds (1 - 5). The cytotoxic effect of the extract was examined against MCF-7 cells by MTT reduction assay, while cisplatin was tested as a reference cytotoxic compound. The antibacterial activity was assessed using nutrient broth micro-dilution (NBMD), and chloramphenicol was used as the positive control Results: Citrostadienol (1), β-sitosterol (2), two glyceride esters of linolenic, linoleic, and palmitic acids (3, 4), and geraniol (5) were isolated from S. compressa for the first time. The extract showed activity against MCF-7 breast cancer cells and reduced cell viability to 68.2 ± 13.1% compared to the control drug at the concentration of 50 µg/mL, while it was not active against seven test bacteria. Conclusions: The anti-complementary activity of the isolated steroids suggests S. compressa for future anti-inflammatory research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.