AimsThe definition of normal values of two-dimensional speckle-tracking echocardiography derived left ventricular (LV) deformation parameters, is of critical importance for the routine application of this modality in children. The objectives of this study were to perform a meta-analysis of normal ranges for longitudinal, circumferential and radial strain/strain rate values and to identify confounders that may contribute to differences in reported measures.Methods and ResultsA systematic search was conducted. Studies describing normal healthy subjects and observational studies that used control groups as a comparison were included. Data were combined using a random-effect model. Effects of demographic, clinical and equipment variables were assessed through meta-regression. The search identified 1,192 subjects form 28 articles. Longitudinal strain (LS) normal mean values varied from -12.9 to -26.5 (mean, -20.5; 95% CI, -20.0 to -21.0). Normal mean values of circumferential strain (CS) varied from -10.5 to -27.0 (mean, -22.06; 95% CI, -21.5 to -22.5). Radial strain (RS) normal mean values varied from 24.9 to 62.1 (mean, 45.4; 95% CI, 43.0 to 47.8). Meta-regression showed LV end diastolic diameter as a significant determinant of variation for LS. Longitudinal systolic strain rate (LSRs) was significantly determined by the age and RS by the type of vendor used.ConclusionVariations among different normal ranges were dependent on the vendor used, LV end-diastolic diameter and age. Vendor-independent software for analyzing myocardial deformation in children, using images from different vendors would be the ideal solution for strain measurements or else using the same system for patient’s follow up.
Monogenic and polygenic mutations are important contributors in patients suffering from epilepsy, including metabolic epilepsies which are inborn errors of metabolism with a good respond to specific dietetic treatments. Heterozygous variation in solute carrier family 2, facilitated glucose transporter member 1 (SLC2A1) and mutations of the GLUT1/SLC2A2 gene results in the failure of glucose transport, which is related with a glucose type-1 transporter (GLUT1) deficiency syndrome (GLUT1DS). GLUT1 deficiency syndrome is a treatable disorder of glucose transport into the brain caused by a variety of mutations in the SLC2A1 gene which are the cause of different neurological disorders also with different types of epilepsy and related clinical phenotypes. Since patients continue to experience seizures due to a pharmacoresistance, an early clinical diagnosis associated with specific genetic testing in SLC2A1 pathogenic variants in clinical phenotypes could predict pure drug response and might improve safety and efficacy of treatment with the initiation of an alternative energy source including ketogenic or analog diets in such patients providing individualized strategy approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.