The demand for electric vehicles continues to grow, as evidenced by global sales of electric vehicles reaching 2.2 million in 2019 and more than doubling to 6.6 million in 2021. The rapid growth of renewable energies and electric vehicles (EVs) necessitates the use of microgrids, which are a promising solution to the problem of integrating large-scale renewables and EVs into the electric power system. Besides, the essential policy support provided by the government is an increase in the availability of public charging infrastructure for EVs. This research employs a fast-charging configuration of an off-board charger with DC energy transfer. Implementation of DC energy transfer for vehicle-to-grid and grid-to-vehicle technology in a microgrid due to DC charging’s unrestricted charger-rated power and rapid power transfer. However, the integration of EVs in the Microgrid system creates some operational challenges, which in this research are power quality issues such as harmonics in power systems that affect both utilities and consumers. The design models using the PI controller and the fuzzy controller based on MATLAB software are simulated to determine the control system’s effectiveness. These simulations assess the control system’s performance, and both approaches help improve the system’s performance power quality by minimizing the system’s total harmonic distortion (THD). According to the results, the fuzzy logic controller exceeded the traditional PI controller as demonstrated by minimizing the THD and also in terms of improving the waveform quality which achieved high accuracy with good performance. This research also utilized the fuzzy logic controller to control the power transfer between EVs and the microgrid, which differs from other research work, to achieve high system efficiency for the benefit of consumers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.