BackgroundHaemodynamic variations normally occur in anaesthetized animals, in relation to the animal status, administered drugs, sympathetic and parasympathetic tone, fluid therapy and surgical stimulus. The possibility to measure some cardiovascular parameters, such as cardiac output (CO), during anaesthesia would be beneficial for both the anaesthesia management and its outcome. New techniques for the monitoring of CO are aimed at finding methods which are non invasive, accurate and with good trending ability, which can be used in a clinical setting. The aim of this study was to compare the Pressure Recording Analytical Method (PRAM) with the pulmonary artery thermodilution (TD) for the measurement of cardiac output in 6 anaesthetized critically ill dogs.ResultsFifty-four pairs of CO measurements were obtained with a median (range) of 3.33 L/min (0.81–7.21) for PRAM-CO and 3.48 L/min (1.41–6.56) for TD-CO. The Bland-Altman analysis showed a mean bias of 0.17 L/min with limits of agreement (LoA) of − 0.46 to 0.81 L/min. The percentage error resulted 18.2%. The 4-quadrant plot analysis showed an acceptable concordance (93%) between the 2 methods. The polar plot showed a good trending ability with the mean angular bias of 3.9° and radial LoA ± 12.1°.ConclusionsThe PRAM resulted in good precision, acceptable concordance and good trending ability for the measure of CO in the anaesthetized dog, representing a promising alternative to thermodilution for the measurement of CO. Among all the pulse contour methods available on the market it is the only one that does not require any calibration or adjustment of the measurement. Further studies are required to verify the ability of this method to accurately measure cardiac output even during unstable hemodynamic conditions.
There has been increasing interest in blood gas analysis in donkeys. "Point-of-care (POC) testing" is a diagnostic testing performed at or near the patient. The aim of the study was to assess the agreement between two POC blood gas analyzers in donkeys. Arterial and venous blood samples were collected from 17 donkeys and analyzed using a fully automated blood gas analyzer (ABL 700 Series Radiometer, Denmark) (RAD) and two POC blood gas analyzers (i-STAT® System, USA; VetStat®, Idexx, USA). The parameters revealed by all three devices were submitted to a canonical discriminant analysis, to evaluate which of them can discriminate the POC analyzers from RAD. On the basis of the discriminant analysis, we evaluated the best POC for each parameter registered, in comparison with RAD. Moreover, the results changed in relationship with the type of blood (venous or arterial blood). The agreement between i-STAT® and RAD was good for venous samples, while was poor for arterial samples. A poor agreement was found between VetStat® and RAD for both venous and arterial samples. The implementation of the number of subjects might lead to a better understanding of the potential role of the POCs in clinical setting. Finally, increasing population of the study would be recommended in order to set reference values. KeywordsBlood gas analysis, donkey; Point-of-care testing; arterial blood gas analysis; venous blood gas analysis.
Dexmedetomidine is an alpha-2 adrenergic agonist, which use had an exponential increase in human and veterinary medicine in the last 10 years. The aim of this mini review is to summarize the various uses of dexmedetomidine underlining its new applications and capabilities in the small animals’ clinical activity. While this drug was born as sedative in veterinary medicine, some studies demonstrated to be effective as an analgesic both in single administration and in continuous infusion. Recent studies have also shown the role of dexmedetomidine as an adjuvant during locoregional anesthesia, increasing the duration of the sensitive block and consequently decreasing the demand for systemic analgesics. The various analgesic properties make dexmedetomidine an interesting drug for opioid-free analgesia. Some studies highlighted a potential neuroprotective, cardioprotective and vasculoprotective role of dexmedetomidine, thus conferring it a place in critical care medicine, such as trauma and septic patients. Dexmedetomidine has demonstrated to be a multitasking molecule and it is ready to face new challenges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.