Coaxial electrospinning process was used to produce biodegradable membranes made of coreshell fibers of a poly(lactic acid) (PLA) shell and a poly(vinyl alcohol) (PVA) core. Scanning electron microscopy analyses of these structures showed that the PLA shell can present certain porosity depending on the process condition. FTIR-ATR and contact angle measurements also suggested imprisonment of the PVA core within the PLA shell. This type of structure was also confirmed by means of transmissions electron microscopy. The morphology of these fibers was dependent on the flow rate of both core and shell solutions, and homogeneous and smooth surface was only attained when the flow rate of the external PLA solution was 4 times the flow rate of the internal PVA solution. The increase in the PLA solution flow rate increases the diameter of the core-shell fiber which reaches up to 1.7 μm. Nevertheless, fibers with smaller average diameter could also be produced (200 nm). These core-shell fibers presented improved hydrophilicity as compared with monolithic PLA fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.