Chronic pain is one of the leading causes of disability and disease burden worldwide, accounting for a prevalence between 6.9% and 10% in the general population. Pharmacotherapy alone results ineffective in about 70-60% of patients in terms of a satisfactory degree of pain relief. Focused ultrasound is a promising tool for chronic pain management, being approved for thalamotomy in chronic neuropathic pain and for bone metastases-related pain treatment. FUS is a noninvasive technique for neuromodulation and for tissue ablation that can be applied to several tissues. Transcranial FUS (tFUS) can lead to opposite biological effects, depending on stimulation parameters: from reversible neural activity facilitation or suppression (low-intensity, low-frequency ultrasound, LILFUS) to irreversible tissue ablation (high-intensity focused ultrasounds, HIFU). HIFU is approved for thalamotomy in neuropathic pain at the central nervous system level and for the treatment of facet joint osteoarthritis at the peripheral level. Potential applications include HIFU at the spinal cord level for selected cases of refractory chronic neuropathic pain, knee osteoarthritis, sacroiliac joint disease, intervertebral disc nucleolysis, phantom limb, and ablation of peripheral nerves. FUS at nonablative dosage, LILFUS, has potential reversible and tissue-selective effects. FUS applications at nonablative doses currently are at a research stage. The main potential applications include targeted drug and gene delivery through the Blood-Brain Barrier, assessment of pain thresholds and study of pain, and reversible peripheral nerve conduction block. The aim of the present review is to describe the approved and potential applications of the focused ultrasound technology in the field of chronic pain management.
To determine the effects of Levetiracetam (LEV) therapy using EEG microstates analysis in a population of newly diagnosed Temporal Lobe Epilepsy (TLE) patients. We hypothesized that the impact of LEV therapy on the electrical activity of the brain can be globally explored using EEG microstates. Twenty-seven patients with TLE were examined. We performed resting-state microstate EEG analysis and compared microstate metrics between the EEG performed at baseline (EEGpre) and after 3 months of LEV therapy (EEGpost). The microstates A, B, C and D emerged as the most stable. LEV induced a reduction of microstate B and D mean duration and occurrence per second (p < 0.01). Additionally, LEV treatment increased the directional predominance of microstate A to C and microstate B to D (p = 0.01). LEV treatment induces a modulation of resting-state EEG microstates in newly diagnosed TLE patients. Microstates analysis has the potential to identify a neurophysiological indicator of LEV therapeutic activity. This study of EEG microstates in people with epilepsy opens an interesting path to identify potential LEV activity biomarkers that may involve increased neuronal inhibition of the epileptic network.
Objective: To determine the effects of Levetiracetam (LEV) therapy using EEG microstates analysis in a population of newly diagnosed Temporal Lobe Epilepsy (TLE) patients. We hypothesized that the impact of LEV therapy on the electrical activity of the brain can be globally explored using EEG microstates.Methods: Twenty-seven patients with TLE were examined. We performed resting-state microstate EEG analysis and compared microstate metrics between the EEG performed at baseline (EEGpre) and after three months of LEV therapy (EEGpost). Results: The microstates A, B, C and D emerged as the most stable. LEV induced a reduction of microstate B and D mean duration and occurrence per second (p<0.01). Additionally, LEV treatment increased the directional predominance of microstate A to C and microstate B to D (p=0.01).Conclusions: LEV treatment induces a modulation of resting-state EEG microstates in newly diagnosed TLE patients. Microstates analysis has the potential to identify a neurophysiological indicator of LEV therapeutic activity. This study of EEG microstates in people with epilepsy opens an interesting path to identify potential LEV activity biomarkers that may involve increased neuronal inhibition of the epileptic network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.