Purpose: Fine-needle aspiration (FNA) cytology, a standard method for thyroid nodule diagnosis, cannot distinguish between benign follicular thyroid adenoma (FTA) and malignant follicular thyroid carcinoma (FTC). Previously, using expression profiling, we found that a combination of transcript expression levels from DDIT3, ARG2, C1orf24, and ITM1 distinguished between FTA and FTC. The goal of this study was to determine if antibody markers used alone or in combination could accurately distinguish between a wider variety of benign and malignant thyroid lesions in fixed sections and FNA samples. Experimental Design: Immunohistochemistry wasdoneon27FTA, 25FTC,and75otherbenign and malignant thyroid tissue sections using custom antibodies for chromosome 1open reading frame 24 (C1orf24) and integral membrane protein 1 (ITM1) and commercial antibodies for DNA damage^inducible transcript 3 (DDIT3) and arginase II (ARG2). FNA samples were also tested usingthe sameantibodies.RNA expressionwasmeasuredbyquantitative PCRin 33thyroidlesions. Results: C1orf24 and ITM1antibodies had an estimated sensitivity of 1.00 for distinguishing FTA from FTC. For the expanded analysis of all lesions studied, ITM1 had an estimated sensitivity of 1.00 for detecting malignancy. Because all four cancer biomarkers did well, producing overlapping confidence intervals, not one best marker was distinguished. Transcript levels also reliably predicted malignancy, but immunohistochemistry had a higher sensitivity. Malignant cells were easily detected in FNA samples using these markers. Conclusions: Weimprovedthis diagnostic testbyadding C1orf24 and ITM1customantibodies and showing use on a wider variety of thyroid pathology.We recommend that testing of all four cancer biomarkers now be advanced tolarger trials. Use of one or more of these antibodies shouldimprove diagnostic accuracy of suspicious thyroid nodules from both tissue sections and FNA samples.
Conventional karyotyping detects anomalies in 3-15% of patients with multiple congenital anomalies and mental retardation (MCA/MR). Whole-genome array screening (WGAS) has been consistently suggested as the first choice diagnostic test for this group of patients, but it is very costly for large-scale use in developing countries. We evaluated the use of a combination of Multiplex Ligation-dependent Probe Amplification (MLPA) kits to increase the detection rate of chromosomal abnormalities in MCA/MR patients. We screened 261 MCA/MR patients with two subtelomeric and one microdeletion kits. This would theoretically detect up to 70% of all submicroscopic abnormalities. Additionally we scored the de Vries score for 209 patients in an effort to find a suitable cut-off for MLPA screening. Our results reveal that chromosomal abnormalities were present in 87 (33.3%) patients, but only 57 (21.8%) were considered causative. Karyotyping detected 15 abnormalities (6.9%), while MLPA identified 54 (20.7%). Our combined MLPA screening raised the total detection number of pathogenic imbalances more than three times when compared to conventional karyotyping. We also show that using the de Vries score as a cut-off for this screening would only be suitable under financial restrictions. A decision analytic model was constructed with three possible strategies: karyotype, karyotype + MLPA and karyotype + WGAS. Karyotype + MLPA strategy detected anomalies in 19.8% of cases which account for 76.45% of the expected yield for karyotype + WGAS. Incremental Cost Effectiveness Ratio (ICER) of MLPA is three times lower than that of WGAS, which means that, for the same costs, we have three additional diagnoses with MLPA but only one with WGAS. We list all causative alterations found, including rare findings, such as reciprocal duplications of regions deleted in Sotos and Williams-Beuren syndromes. We also describe imbalances that were considered polymorphisms or rare variants, such as the new SNP that confounded the analysis of the 22q13.3 deletion syndrome.
Loss of ABI gene family member 3-binding protein (ABI3BP ) expression may be functionally involved in the pathogenesis of cancer. Previous reports have indicated a loss of expression in lung cancer and a presumed role in inducing cellular senescence. We show here that ABI3BP expression is significantly decreased in most malignant thyroid tumors of all types. To better understand ABI3BP's role, we created a model by re-expressing ABI3BP in two thyroid cancer cell lines. Re-expression of ABI3BP in thyroid cells resulted in a decrease in transforming activity, cell growth, cell viability, migration, invasion, and tumor growth in nude mice. ABI3BP re-expression appears to trigger cellular senescence through the p21 pathway. Additionally, ABI3BP induced formation of heterochromatin 1-binding protein g-positive senescence-associated (SA) heterochromatin foci and accumulation of SA b-galactosidase. The combination of a decrease in cell growth, invasion, and other effects upon ABI3BP re-expression in vitro helps to explain the large reduction in tumor growth that we observed in nude mice. Together, our data provide evidence that the loss of ABI3BP expression could play a functional role in thyroid tumorigenesis. Activation of ABI3BP or its pathway may represent a possible basis for targeted therapy of certain cancers. Endocrine-Related Cancer (2008) 15 787-799
BackgroundMounting evidence has indicated that ABI3 (ABI family member 3) function as a tumor suppressor gene, although the molecular mechanism by which ABI3 acts remains largely unknown.MethodsThe present study investigated ABI3 expression in a large panel of benign and malignant thyroid tumors and explored a correlation between the expression of ABI3 and its potential partner ABI3-binding protein (ABI3BP). We next explored the biological effects of ABI3 ectopic expression in thyroid and colon carcinoma cell lines, in which its expression was reduced or absent.ResultsWe not only observed that ABI3 expression is reduced or lost in most carcinomas but also that there is a positive correlation between ABI3 and ABI3BP expression. Ectopic expression of ABI3 was sufficient to lead to a lower transforming activity, reduced tumor in vitro growth properties, suppressed in vitro anchorage-independent growth and in vivo tumor formation while, cellular senescence increased. These responses were accompanied by the up-regulation of the cell cycle inhibitor p21 WAF1 and reduced ERK phosphorylation and E2F1 expression.ConclusionsOur result links ABI3 to the pathogenesis and progression of some cancers and suggests that ABI3 or its pathway might have interest as therapeutic target. These results also suggest that the pathways through which ABI3 works should be further characterized.
We have previously shown that ARG2 expression was increased in most malignant thyroid tumors, but absent in benign lesions and normal tissues. Small interfering RNA knockdown was used to investigate the role of ARG2 in a thyroid carcinoma cell line. ARG2 knockdown decreased eNOS expression as well as the expression of eNOS-related genes (p21, Akt1, HIF-1, VEGF, and CAV1). ARG2 silencing changed tumor properties of thyroid cancer cells promoting apoptosis and reduced expression of cell proliferation markers. These results, coupled with enhanced nitric oxide production and elevated reactive oxygen species (ROS) levels, account for the altered intracellular redox environment. Genes related to either production (DUOX1 and NOX4) or catabolism (SODs) of ROS and reactive nitrogen species were negatively modulated by ARG2 knockdown. Additionally, a positive correlation of ARG2 with eNOS and related genes was investigated in thyroid tumors, further substantiating our in vitro findings. Our results suggest that ARG2 and eNOS may work in a coordinated manner and the underlying mechanism might be of major significance for thyroid tumorigenesis and/or tumor progression pathways. Fine modulation of ARG2, eNOS, and related genes may represent a potential source for targeted therapy of several cancer types.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.